
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
2000050) 054

COMPUTER-AIDED RECOGNITION OF MAN-MADE
STRUCTURES IN AERIAL PHOTOGRAPHS

by

Luiz Alberto Lisboa da Silva Cardoso

December 1999

Thesis Advisor:
Second Readers:

Neil C. Rowe
Robert B. McGhee
Roberto Cristi

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTED 3

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

December 1999
3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTffLE
COMPUTER AIDED RECOGNITION OF MAN-MADE STRUCTURES IN AERIAL

PHOTOGRAPHS

5. FUNDING NUMBERS

6. AUTHOR(S)

Cardoso, Luiz Alberto L. S.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Brazilian Naval Commission
5130 MacArthur Blvd. N. W.
Washington, D.C. 20016-3344

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense, the U.S. Government or the Brazilian Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b.DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Aerial image acquisition systems are producing more data than can be analyzed by human experts. Most of the images produced
by remote sensing satellites, including military ones, never get seen or inspected. In this work, automated detection and recognition of
buildings in aerial photos is explored. Connectivity analysis is performed on graphs derived from line segment representations of the
original images, obtained with the use of the Radon Transform. The model is experimentally validated using 2-meter panchromatic
aerial photographs from the National Aerial Photography Program (NAPP), which provide a marginally adequate resolution for the
recognition of small buildings.

14. SUBJECT TERMS

Aerial photograph analysis, pattern recognition, imagery intelligence
15. NUMBER OF PAGES

161
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239.18

11

Approved for public release; distribution is unlimited.

COMPUTER AIDED RECOGNITION OF
MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS

Luiz Alberto Lisoba da Silva Cardoso
Lieutenant Commander, Brazilian Navy

B.S.E.E., Military Institute of Engineering, 1985
M.S.E.E., Catholic University of Rio de Janeiro, 1992

Author:

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1999

\r$).(Lu
Luiz Alberto Lisoba da Silva Cardoso

Approved by: ^\^C^ (?. ^C>^7^€^

Neil C. Rowe, Thesis Advisor

Rqhgrto Cristi, SeconoTReader Rojh&lo Cristi, Sec

Dan Boger, Chairmjl
Department of Computer science

in

IV

ABSTRACT

Aerial image acquisition systems are producing more data than can be analyzed
by human experts. Most of the images produced by remote sensing satellites, including
military ones, never get seen or inspected. In this work, automated detection and
recognition of buildings in aerial photos is explored. Connectivity analysis is performed
on graphs derived from line segment representations of the original images, obtained with
the use of the Radon Transform. The model is experimentally validated using 2-meter

panchromatic aerial photographs from the National Aerial Photography Program (NAPP),
which provide a marginally adequate resolution for the recognition of small buildings.

DISCLAIMER

The algorithms and computer programs developed in this research were not
exercised for all possible cases of interest. While every effort has been made, within the
time available, to ensure that the programs are free of computational and logic errors,

they cannot be considered validated. Any application of these programs without
additional verification is at the risk of the user.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. AERIAL PHOTOGRAPHY 1

B. MILITARY APPLICATIONS OF AERIAL PHOTOGRAPHS ANALYSIS . 2

C. VISION: THE NEED FOR AUTOMATED ANALYSIS 3

D. THE CONTRIBUTION OF THIS WORK 4

II. AERIAL PHOTOGRAPHY 7

A. SPECTRAL INFORMATION 7

B. CAMERA ATTITUDE 8

C. ORTHORECTMCATION 8

D. ELEVATING PLATFORM 8

E. MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS 9

F. LIMITATIONS INDUCED BY RESOLUTION 9
1. Spatial Resolution 9
2. Radiometrie Resolution 10

G. HIGH RESOLUTION COMMERCIAL IMAGERY USED IN THIS WORK
 10

III. COMPUTER VISION METHODS 13

A. OVERVIEW 13

B. IMAGE PROCESSING 14

C. FEATURE EXTRACTION 14

D. THE RADON TRANSFORM 15

IV. MODEL DESCRIPTION 17

A. EDGE DETECTION 18
1. Basics 18
2. The Canny Algorithm for Edge Detection 18

Vll

B. EDGE ENHANCING BY MORPHOLOGICAL FILTERING 20

C. PRIMITIVE LINE EXTRACTION 22
1. Basics 22
2. Line Extraction with the Radon Transform 23
3. Determining Line Segment Endpoints 25
4. Mean Square Error Line Segment Estimator 26
5. The Overall Effect of the PL Extraction Phase 29

D. CLUSTERING OF PRIMITIVE LINE SEGMENTS 31

E. MERGING OF PRIMITIVE LINE SEGMENTS 33
1. The Merge Procedure 33
2. Overall Merge Effect 37

F. SEARCH FOR BUILDINGS 37
1. Endpoints Graph Formulation 37
2. Finding Cycles in the Endpoints Graph 40
3. Enhanced Cycle Search 41
4. Elimination of Spurious Cycles 42
5. Cycle Filtering for Buildings 42
6. Merging Component Cycles of Buildings 46

G. USING NEURAL NETWORKS 48
1. False Alarm Reduction with Neural Networks 48
2. Selecting More Parameters for the Classification of Cycles 49

V. RESULTS FROM EXPERIMENTATION 51

A. QUALITY ASSESSMENT OF THE MODEL 51
1. False Negative Errors 52
2. False Positive Errors 53

B. OTHER ERROR MEASURES 54

C. IMPLEMENTATION ISSUES 54

vin

VI. CONCLUSIONS 57

APPENDIX A. EXPERIMENT NOTEBOOK 59

APPENDIX B. PROGRAM LISTING 65

LIST OF REFERENCES 143

BIBLIOGRAPHY 145

INITIAL DISTRIBUTION LIST 147

IX

ACKNOWLEDGMENT

The author would like to acknowledge the extensive and unconditional support

received by his sponsor agency, the Brazilian Navy, who provided not only complete

financial support along his graduate studies, but also and more importantly the concrete

motivation to purse new frontiers of knowledge.

More than to any other person, the author also wants to thank Prof. Neil C. Rowe,

his research supervisor, for his patience, dedication and thoroughness in reviewing the

text and the technical content of this work. The same qualities, balanced with freedom of

action and creativity, were present in all his outstanding classes.

From the not a little less bright classes taken from Professors Yutaka Kanayama,

Robert McGhee, Roberto Cristi, Monique Fargues, Ralph Hippenstil, Thomas Wu, Craig

Rassmussen, Harold Fredericksen and Carlos Borges came the remaining background

specialization in Artificial Intelligence, Signal Processing, Algorithms and Mathematics

necessary to accomplish the task (some would say that everything is Mathematics,

anyway). Not diminishing the contribution of some other excellent professors and

lecturers in other areas, the author expresses a very special recognition to those above.

Two other important acknowledgements go to the NPS staff. First to Mr. Gary

Rediske and his team, for their silent and competent work that kept the main

computational resources used in the development of this work in good shape and at

virtually 100% availability, both hardware & software. The second goes to the Computer

Science Department assistant, the efficient and caring friend Mrs. Jean Brennan, who

always handled his administrative affairs timely and with no flaws.

Finally, the author declares his deep gratitude to his family and many friends from

whom he learned perhaps more and more valuable things along the way than from either

his graduate studies or this thesis itself.

XI

Xll

I. INTRODUCTION

A. AERIAL PHOTOGRAPHY

Since the advent of photography last century, it has been used as a descriptive

resource for a large variety of urban constructions and other human-made structures.
Since the nineteenth century, aerial photographs - obtained from the top of nearby hills
or balloons, from kites or airplanes, whatever the technology could offer as an elevated
platform for a camera - were always highly regarded as a descriptive tool [Ref. 1].

More recently, artificial satellites provide the ultimate platform for a camera:
Permanently in the skies, from a high latitude orbit, a satellite is able to periodically
cover virtually any point of the globe every few days. From a military perspective, a
camera hundreds of thousands kilometers above ground is much more convenient, safer
and discreet than a manned flight within reach of enemy reaction. Also, orthorectified
images can be easily produced from the raw pictures collected, since orbits, position in
orbit and attitude are controlled and precisely known when a picture is captured. That
means that it is possible to measure the geometry of the area photographed to a high

degree of accuracy.

Modern remote sensing satellites are equipped with high-definition electronic
cameras and high-bandwidth communication ports that enable ground control stations to
receive images in digital format and instantaneously relay them to designated locations
continuously. This opens new fronts for the analysis of aerial photographs: Beyond
quality and availability, the latency in the capture process is now minimal. And by being
in digital format, the information can be easily stored, retrieved and made available to a

computer program.

This is appealing because analysis of an aerial photo by a human expert is slow,
prone to error and often infeasible due to lack of sufficient manpower. The automation of
photographic analysis is one of the main research topics in remote sensing today. Most of
the results concern high-level categorization of terrain and the production of digital maps.
The military uses digital terrain modeling and general electronic cartography for
Command, Control, Communications, Computers and Intelligence (C4I) systems.

Semantic contextual analysis of photographs remains still an area of open

investigation, since the only effective tools for it today are well-trained human experts.

The experts perform a set of actions: (i) Pixels of the image are grouped into entities; (ii)

entities are recognized; (iii) relationships are established; and (iv) conclusions are drawn

from the overall scenario. Semantic interpretation yields not data and statistical features

but conclusions and facts.

B. MILITARY APPLICATIONS OF AERIAL PHOTOGRAPHS ANALYSIS

Typical military uses of aerial photography include:

Tactical area surveillance, monitoring over a geographic area for detecting and

locating targets that are predictable in nature (for instance, ships, tanks, aircrafts, and

personnel). Target activity can also be tracked along time.

Strategic wide area surveillance, monitoring over a large geographic area for

interesting or unexpected or not restrictively defined events that might have long-term

military relevance. Many events in this class either take time, like building construction

and supply relocation, or have long lasting detectable consequences, like natural

catastrophes. Such monitoring was important recently for NATO operations in Kosovo
[Ref. 2].

Target analysis or tactical survey, analysis performed on a limited amount of

information concerning some specific area or object and its surroundings, for force

evaluation or mission planning.

Damage assessment survey, a special type of tactical survey performed after a

strike or attack, estimating damage produced to targets. A previous tactical survey should

be available for comparison. Accurate damage assessment is important since information

and impressions collected during the battle may be misleading or false, since often the

damage is less intense than is believed.

Special-forces mission-planning survey, analysis to support the deployment of

special forces. These are missions where direct contact or exposure to the enemy is

implied and the area surveyed is usually enemy-controlled and may not be easily

accessed by means other than photographic. Activities in these missions may include

guerilla warfare, evasion and escape, subversion, sabotage, and other operations of

requiring low visibility or a covert nature. Photointerpretation requirements are

demanding with respect to accuracy, level of detail, and delivery timing.

The analysis associated with these tasks is similar in nature. The challenge to the

expert is the time between when images are acquired and when conclusions must be

derived (especially in the last two tasks). Analysis can be complex and an intense

discussion between experts and mission command often occurs, making it desirable that

the experts be locally available.

C. VISION: THE NEED FOR AUTOMATED ANALYSIS

Well less than half of the pictures taken by our satellites ever
get looked at by human eyes or by any sort of mechanized device or
computerized device ...and there is no plan at the present to build up
an image analytic capability - John Mills, staff director for the U.S.
House Intelligence Committee (declaration published on March 26, 1999).
[Ref. 3].

The above quotation suggests a gap between the investment of billions of dollars

by the United States on hardware for acquiring high-quality imagery and the necessary

analytical ability. Was this a mistake? No, because easier problems should be solved first

in a technical area. But the current situation urges for the development of automated

analysis techniques and tools for military and intelligence needs because:

(i) The analytical manpower available today is unable to use all the costly large

data sets generated by the latest generation of collecting platforms, and data collection

rates continue to increase.

(ii) Response-time requirements for analysis are continually becoming shorter for

military applications, and such applications must always be judged on a competitive

basis.

(iii) Automated analytic systems would mostly compensate the absence of an

expert on-site, giving a chance to interactively question a hypothesis. If experts are

available on-site, automated tools could still enhance their productivity.

D. THE CONTRIBUTION OF THIS WORK

Analysis of aerial photography by a hierarchical approach much like that of

experts requires the following actions:

(i) Detect man-made structures in aerial photos;

(ii) Recognize these structures;

(iii) Establish relationships between these structures;

(iv) Infer useful assertions based on the relationships found;

(v) Answer user questions regarding the image.

This work investigates the use of computer vision techniques for the task of aerial

photography analysis, focussing on the study and validation of some concepts in (i) and
(ii) above.

The investigation was concentrated on the recognition of buildings, among the

most important features militarily. Most of the existing techniques require clear, high-

definition images. We chose to work with lower-definition images, hoping that robust

algorithms would later prove themselves useful for extracting more detailed information
within entities.

The algorithms developed were tested and evaluated using 2-meter panchromatic

images from commercial sources. This is about the lower limit of resolution for human

experts to correctly identify buildings. Benchmarking under these conditions gives a

more realistic comparison of the algorithms qualities to the human skills. Results

obtained indicate promising techniques that may be applied in future automated analysis
systems.

Chapters II and IE provide the reader with essential background in aerial
photography and computer vision methods. Our program for photography analysis and

building recognition is detailed in Chapter IV. Results obtained from the experimentation
are summarized in Chapter V. Chapter VI contains concluding remarks about the

investigation conducted.

THIS PAGE INTENTIONALLY LEFT BLANK

II. AERIAL PHOTOGRAPHY

Though aerial observation has military value, its also has value to city planning,

urban development monitoring, map building, legal disputes, and other civilian activities

[Ref. 4]. Some companies in the business of aerial photography have existed for more

than fifty years [Ref. 5]. Currently there is a large demand for aerial photographs, and the

projected market for the next decade is billions of dollars.

Aerial photography can have many attributes. Pictures taken of the same location

may substantially differ due to incidental reasons, like current illumination and weather.

However some other more conspicuous structural reasons will exist as a consequence of

the different processes and camera parameters being used. In a first simplifying approach,

the quality of an image will depend on spectral information, camera attitude and

resolution, and the elevating platform.

A. SPECTRAL INFORMATION

Images can be multispectral, if the energy of different spectral bands is registered

separately, or panchromatic, if only one data value is registered per pixel. Commonly

multispectral components are mapped to the basic color channels (red, green and blue).

If, however, a single one-dimensional value is captured per pixel, representing the total

energy along the spectrum, the data set can be visualized by the gray tones. The selection

of band sensitivity is fundamental, for the phenomena being photographed may be better

visible in certain wavelengths. The lower the wavelength, the higher the potential

resolution. Seeing through atmospheric haze, however, is facilitated at infrared

wavelengths due to the light scattering of air and water at visible-light wavelengths. But

the highest-resolution images are obtained by merging the information of multiple

spectral bands. This is also why pattern analysis based on apparently less informative

gray tones images can still be worthwhile, what we study in this work.

B. CAMERA ATTITUDE

Aerial photographs can be taken from different angles with respect to the earth
surface. Planimetrie errors are introduced proportional to the cosine of the deviation
angle from directly above. Images taken up to 15° from straight down will produce less
than 3.5% relative error in measurements of lengths and less than 2° error in
measurements of right angles, as shown in Table 1.

S, Deviation angle

from straight above

Relative length error

due to parallax effect

Max angular error

for right angles

5° -0.38 % to 0 ±0.22°

10° -1.5% to 0 ±0.88°

15° -3.4% to 0 ±2.0°

20° -6.0% to 0 ±3.6°
Maximum distortions ii l aerial photos caused b y deviation from straig

not considering the curvature of the Earth.

C. ORTHORECTIFICATION

Angle preservation and local planimetric fidelity can be obtained in every point of
the image if a transformation called orthorectification is applied to it. This distorts
locations in an aerial photo based on camera and viewpoint parameters. Of the images
used in this work, those from the National Aerial Photography Program are not
orthorectified, while those from the SPIN-2 imagery are. But the NAPP images were not
a problem because the deviation angle is kept less than 4 degrees, insignificant to the
results.

D. ELEVATING PLATFORM

Nowadays, the platform is an airplane or artificial satellite. The same camera on
board a lower altitude aircraft (500m to 20km typical altitude) will give much higher-
resolution pictures than on a satellite (800 km typical orbit height). But satellites are often
preferred, because they offer a worldwide, safe, and concealed coverage, invaluable in

8

military operations. Their positioning and attitude control are not subject to wind and

other mechanical disturbances that may affect aircraft.

E. MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS

Example of these are buildings, roads, harbors, and runaways. Buildings are
usually the most relevant man-made structures in aerial photographs. Their detection is
valuable because most of strategic human activity occurs in, or in association with, a
building of some sort. Also, as they do not move, they serve as good references for the

relative position of other type of objects. Experts detect their presence based on the

straight edges and right angles of their contours, often accompanied by contrast to the

background.

F. LIMITATIONS INDUCED BY RESOLUTION

1. Spatial Resolution

An object can be detected by an imaging system provided it radiates enough
luminance in the direction of the camera. So resolution cannot be defined as the
minimum size that an object must have to be detected. Spatial resolution of an image,
expressed in meters, is defined as the minimum distance between two individually
detectable point objects at which they still can be distinguished. The sample definition of
an image, the distance in meters between pixels, should not be confused with the spatial
resolution. To preserve information of the image, the sample definition employed in its
digitization should be smaller than the resolution. However, increasing the sample
definition much beyond that will not increase the intrinsic image definition.

Detecting an object will not guarantee its recognition. The characteristic size,
luminance and contrast of buildings in aerial images makes them typically detectable at
10m resolution. For an expert to assert that something is a building (recognition) requires
a resolution about two times better (5m). For the classification of buildings, the resolution

should be better than 2.5m. [Ref. 6].

2. Radiometrie Resolution

Radiometrie resolution is the number of quantization levels for the luminance of

each pixel. It is commonly expressed in bits. Although the dynamic range of human eye

sensitivity is about 109 [Ref. 7], the maximum number of gray levels that can be

perceived is around 30 to 60 (roughly 6 bits). Improving the radiometric resolution of a

digital panchromatic image further than that will not affect its analysis by human experts.

Nonetheless, it helps to have raw images digitized at higher resolutions so that the

original levels can be mapped into a good 6-bit presentation range. Typical resolution of

commercial imagery is 8 bits.

G. HIGH RESOLUTION COMMERCIAL IMAGERY USED IN THIS WORK

New commercial high-resolution imagery satellites such as the IKONOS, just

launched, are predicted to be operational within the next few months, delivering 1-meter

resolution panchromatic and 4-meter multi-spectral data [Ref. 8]. Meanwhile, high-

resolution imagery comes from either airborne photography or formerly classified 2-

meter satellite imagery from the seventies and eighties which are being released to public

under commercial agreements.

The aerial photographs used in this work were panchromatic images from two

sources: The National Aerial Photography Program (NAPP) of the U.S. Geological

Survey (USGS) and the SPIN-2 from Sovinforsputnik consortium.

The NAPP aerial photographs are taken on roughly a 6-year cycle, covering the

entire continental U.S. They are shot with a camera with a 6-inch (152mm) focal length

lens and from airplanes flying at 20,000 feet (6 km). Camera tilt angle is controlled and

guaranteed less than 4°. Film-negative size is 9 by 9-inch, yielding photos of areas a bit

more than 5 miles on a side. The camera optics and film have spatial resolution sufficient

to resolve objects 1 to 2 meters in size. Digital images were produced scanning photos

1:1 from the negative films at 8-bit, 600 dots per inch, a sample definition of about 1.7

meters per pixel, to preserve information.

10

The SPIN-2 imagery comes from the former Soviet Kosmos Program, now
available from the association of companies Sovinforsputnik (Russia), Aerial Images Inc.
and Microsoft [Ref. 9]. The images were taken from a 1000mm focal length KVR1000
camera on satellites orbiting at 220 km, providing 2-meter spatial resolution. The images
are digitized and distributed orthorectified and geo-referenced to precise accuracy, of 8

bits and 1.56 meter per pixel. [Ref. 10].

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

III. COMPUTER VISION METHODS

A. OVERVIEW

Computer-vision methods try to recognize objects and infer facts from digital

images. Produced by either direct digital capture or by scanning photographic film, the
images can then be represented by bidimensional arrays of pixels, each pixel containing a

number that describes a luminance value. The images are usually projections of the

tridimensional world, from the perspective of the camera.

Computer-vision models and algorithms are frequently based on presumed
characteristics of the human vision. One of them is the hierarchical organization. This
means that recognition of complex shapes is obtained by first recognizing elementary
patterns, then recognizing more complex patterns based on their positional relationships.

Facts

*

Knowledge Recognition

\ k /
Template Matching

1 f / 1
Feature Extraction

/
Image Processing

Image

Figure 1: A hierarchical model for computer vision: from image data to facts.

13

B. IMAGE PROCESSING

Image enhancement, edge detection, and thresholding are commonly applied on
digital images as a first step in extracting information. Linear and non-linear filtering are

extensively used in these steps. An often-used technique is the neighborhood-based
processing. Each pixel P(i, j) of the image has a set of neighbor pixels called structuring

element or neighborhood, given by a selection function AI. A new array Q is created

where Q(i, j) is assigned to i(N (P(i, j))) for every i and j, for some mapping function f,
usually one easily computable.

The filter, given by the composite function i ° N is then an operator over the

image space, returning a new image from the original one. This allows the cascading of
filters until the information of interest is emphasized.

Original Image Filtered Image

j

1 , ^~
'—: r 1

Neighb orhooc

J
1 of P(i, j)

Figure 2: Image processing based on neighborhood mappings.

C. FEATURE EXTRACTION

Features are geometric patterns in images. The most important and basic of them
is the line segment, because its occurrence in aerial photographs is often associated with
human-made structures. Interesting higher-complexity features, like right angles, parallel
line segments, and rectangles can be defined with straight-line segments.

14

Parametric transforms are standard methods of accomplishing feature extraction.

They map an image from a primary domain into a transformed space where it is easier to

identify geometric features. The transformed space, which is also called a parametric

space or transformed domain, is often a bidimensional space that can be displayed as an

image as well. Two commonly used parametric transforms for the detection of straight

lines are the Hough and the Radon Transforms. We chose the second due to its fast

discrete implementation with the Fast Fourier Transform.

D. THE RADON TRANSFORM

The Radon Transform [Ref. 11] works similarly to the easier-to-understand

Hough Transform. It was devised in 1917 and it remained almost unnoticed until it

became largely used in tomographic reconstruction. It was originally defined for

continuous functions. Its main properties are:

(i) It maps Cartesian into polar pixel coordinates and replaces the complex search

for aligned topologically connected clusters of pixels by the search for relative maxima in

the transformed image.

(ii) Each pixel of the transformed domain will be associated with a unique line in

the original image. The larger the transformed image, the finer will be the granularity in

the representation of lines in the original image.

(iii) Distinguishing collinear line segments in the Radon Transform is impossible

since their mappings coincide. Hence extraction of line segments requires additional

processing after the transform.

For a continuous image domain a:SH2-»^H, the Radon transform is:

a (p, <|>) = Radon[a](p, (j)) = f(x, y) 8(x cos((|)) + y sin«)) - p) dx dy, (1)

where 8:91—»1R is the Dirac Delta function.

15

The angular coordinate $ ranges in the interval [-rc/2, 7t/2], and the distance p to

the center C can assume negative values according to the convention in Figure 3a.

1 » —*
y l<M ^' t/2

1'

11 & \ \ >P2 ,'^.„ <|>1,3 >0

irV. . X X
—►

• N ■

P3
/
/

P4 <f
<o

Of B

Pk> 0 « Xk>0

(a) Standard polar convention

1 » ~1
V IM < 71/2

ir *
V* $._,_ -- a —,—
\d2 di

\ •

C \j,'B^ i>0\ X
 ►

/ \«i. 3<o;
da/

•
• cUN V •

qf-_ — IS-
ir

*
< dk>0 < » yk = >0

(b) Tomographie polar convention

Figure 3: Polar coordinate conventions used in the Radon Transform.

The interpretation for Radon[a](p, (j>) in equation (1), when "a" is a binary image,

is the total length of the intersections of "on" areas of "a" and the line path LP<D given by

the equation x cos(<|>) + y sin(<» - p = 0. In the discrete approximation of the Radon

transform (DRT), this is roughly proportional to the number of "on" pixels crossed along
this line.

The DRT can be efficiently computed by the Fast Fourier Transform (FFT)

algorithm because it can be expressed as the inverse one-dimensional transform in the

radial variable p of the bidimensional Fourier Transform of f(x,y) [Ref. 12]. The DRT is

commonly implemented using the polar convention (0, d) as in Figure 3b, 9 being the

"direction of inspection" associated with line Lp<t). The discrete evaluation of the Radon

Transform, R(m, n), can be displayed as an image called sinogram.

16

IV. MODEL DESCRIPTION

We present now our approach to the analysis of man-made structures in aerial

photographs, which follows the same guidelines proposed by Ablameyko and
Lagunovsky [Ref. 13, 14], but where the search for shapes is not limited to rectangles.
Connectivity analysis of a graph derived from the line-segment representation of the
image is performed aiming at the recognition of more general building-like contours.

For easy visualization of the process through its phases, intermediate results refer
to the same image, cropped from a 1993 NAPP photograph (NAPP Roll* 6354 Frame#
253, of June 12, 1993) of Monterey, California. This image, in Figure 4 below shows an
area of roughly 0.28 km2 centered at latitude 36.60237 N and longitude 121.86555 W; it
was digitized at approximately 1.78 pixel/m, 8 bit/pixel, yielding a 256 gray-tone,
340x260 pixel image.

Figure 4: Sample NAPP aerial photograph of Monterey, California, USA.

17

EDGE DETECTION

Basics

Edge detection is the process of locating the main boundaries in a given image.

Boundaries will exist between any two regions of the image exhibiting different average

properties of color, luminance or texture. For gray-tone images, luminance differences

are paramount.

The general approach for edge detection in gray-tone images is to first compute

the gradient magnitude of the image, and then find the strongest edge pixels by

thresholding. This operation produces a binary image of the same size of the original one,

with pixels set to one where the gradient magnitude was high enough, to indicate a

plausible boundary pixel, and set to zero otherwise.

2. The Canny Algorithm for Edge Detection

Use of a single threshold for detecting edge pixels may cause many important

edge misses, if the threshold value is taken too high; if it is too low, some uninteresting

boundaries or even noise in the image may cause the erroneous detection of edges. So

Canny proposed [Ref. 15] an algorithm that introduces hysteresis in the thresholding.

Edge strengths of topologically connected pixels are reenforced by strong gradient values

of neighbor pixels. That improves the chances that major portions of boundary curves

will be detected as a contiguous edge. The steps of Canny's algorithm are:

(i) A Gaussian smoothing filter is applied to the original image.

(ii) The gradient magnitude and direction is estimated at each pixel by directional
differentiation operators.

(iii) Edge candidate pixels are located by computing the points of relative maxima

in the gradient magnitude along the gradient direction, an operation referred as non-

maximal suppression.

18

(iv) Edge candidates are inspected by a topological threshold rule. All pixels with

gradient magnitude above the high threshold TiH are assumed to be edge pixels. The "edge

influence" is then propagated by recursively making every pixel with gradient magnitude

higher than a low threshold r\L also an edge pixel provided there is some previously found

edge pixel in its immediate 8-neighborhood (see Figure 5).

ft-M-i Pi-l,j Pi-l,j+l

Pi,M Pij Pi,j+1

Pi+l,j-l Pi+l,j Pi+l,j-l

Figure 5: Representation of the 8-connected neighborhood of a pixel py.

Canny's method, one the most successful general edge-detection algorithms

[Ref. 16], was chosen for this study after excelling in tests we did against multilevel

thresholding edge detectors. It meets some optimality criteria concerning non-spurious

edge detection, accuracy on the edge location and avoidance of double-edge detection, as

shown in Canny's original paper of 1986 [Ref. 15] and textbooks on image processing

[Ref. 17].

Application of Canny's method to Figure 4 gives Figure 6. Black appears where

edge pixels were detected. Although detail is lost in this operation, the major part of the

building and road contours is preserved, so that a trained human observer would be able

to detect and recognize them. Generally speaking, any intermediate representation of

visual information should still be meaningful to the eye of an expert.

19

Figure 6: Binary image obtained with Canny's edge detector.

B. EDGE ENHANCING BY MORPHOLOGICAL FILTERING

To reduce the edge-coupling interference, morphologic filtering is used to rupture

the edge segments before the extraction of primitive line segments described below.

Good candidates for rupture points are corners of right angles and convergence points as

forks, joints, and crosses.

Morphologic filtering is performed by mapping small squared pixel

neighborhoods using fast lookup table implementation. Specifically, we used 3x3

neighborhoods and a lookup table of length 23x3 = 512. Figure 7 shows all the considered

cases for rupture points. For such points the corresponding pixel in a special binary image

K (same size of E) is set to one, with K(i, j) = 0 elsewhere. Figure 8 shows the rupture

points for the edge image in Figure 6. It can be noticed that rounded corners were missed,

but many others corners were detected.

20

Orientable
Neighborhoods

Non-orientable
Neighborhoods

r~
Prototype ~^L

Neighborhood -f

^

H HHHHfflEaH m

— mm EEHEHES

Prototype
Rotated by 180° WH £

LED _i_l_ iil

Prototype
Rotated by 270°

Corners

H SilSiii
Confluences Crosses

Figure 7: 3x3 neighborhoods for detection of prospective rupture points in a binary edge
image.

The image segmentation is then performed on the difference image E - K , not on

the original image E. K is used again in the primitive line segment extraction phase

(IV.C.2): After segmentation, bounding boxes are enlarged by a one pixel-wide envelope

and segments recomputed including points in K, to preserve more of edge information.

21

Figure 8: The calculated rupture points (black dots) superimposed on the edge image.

C. PRIMITIVE LINE EXTRACTION

1. Basics

The binary image produced by edge detection contains a set of edge pixels. The

next task is to produce a list of line segments from this binary image, because these are

key in identifying man-made structures. Primitive-line extraction is the first level of

symbolic representation of the image and feature extraction. The features, called

primitive line segments (PL), are straight-line segments along region boundaries in the
original image.

Line segments are defined by a pair of points (Pi, P2). In the two-dimensional

space of images, each point location can be specified by two numbers, so each segment is

defined by four numbers. Although the resolution of the original image is limited to the

pixel size, the PL representation can use floating point numbers. The precision in

segments location is potentially better than the pixel size because of the large number of

pixels used to determine each one.

22

Since most of the analysis operations use the angular information, line segment

data redundantly stores its inclination angle 6, the coordinates of the base point B

(projection of the center of the image onto the line), and the distance d to the center of the

image:

PL = (6, d, Bi, Bj, PH, PIJ, Pa, P2j) (2)

Figure 9 illustrates this. (0, d) are the polar coordinates with respect to the center

C of the image, d being positive when the base point is above the center (following

convention of Figure 3b). Pixel locations in the image, on the other hand, are expressed in

the Cartesian coordinate system (i, j), with the origin at the upper-left corner of the

image.

i .
, P2 of PLi

Base point of PL,

Pi Of PLi

P, Of PU

P2 Of PU

Base point of PU

Figure 9: Redundant coordinate system used to represent primitive lines.

2. Line Extraction with the Radon Transform

The first step in line extraction is the segmentation of the binary edge image "E"

into sets of connected pixels, using a 8-cell neighborhood to define pixel connectivity.

The partition of edge pixels £, into the set {^} is accomplished such that equation (3)

23

holds. Figure 10 exemplifies this operation for an edge image containing nE = 3
segments.

:"■. • ■':

f:::": ::c:^:3::.:

/

- ■ aa ■■•■

■G"_"

■v X

Ei

Figure 10: Example illustrating the segmentation of a binary edge image.

nE nE

5 = U & , with n & = 0,
i=l i=l

(3)

where 1 < i < TIE, ne = number of segments in E.

24

Extracting lines from an edge binary image is accomplished by the Radon
Transform (presented in ELD). The Transform is applied to the bounding box F; around
each pixel set % to save further computation time, resulting in a coefficient array R; that

can also be plotted as an image. Figure 11 shows the plot of the Radon Transform for
edge image E3. The relative maxima in the transform corresponds to possible lines in the
binary image. In Figure 11, there are two relative maxima, marked with crossing lines,

the one at (93li, d3,0 = (53°, 6) and one at (e3;2, d3,2) = (-34°, 8).

F3
Radon

Transform

S>

j2 -15

L-10

0-
2
<o -5

10

j 15

90

R3

* |
!
i
i

t

i

f

ä

s

i
1
i

i
■i

i

:■&■■■:.. ■■■■%'■':

I
■.]■■■

IgT'I
Sl^S;

:■

7" !
ÄTBpa

. . ,-a
■0 .i$Jltll|§|B

, ™ * '-- . •

1
ä i

i 3 ' * \

> } 1
! : : ! i

■45 0 45
6, orientation angle of PL (degrees)

90

Figure 11: Plotting of R3, the Radon Transform for edge image E3.

3. Determining Line Segment Endpoints

The Radon Transform maxima give only lines through potential line segments;
they do not give the endpoints of the line segments. This second task is accomplished by
first masking out all the pixels in Fi not on a 3-pixel-wide linear band centered on the
support line. Because this masking may break the connectivity of the pixels in the linear
band, a new segmentation is done with these pixels. For each of the resulting clusters, a

25

primitive line segment can be fit using a least-squares estimate based on the projections

on the support line of those pixels at extreme xy coordinates.

In order to reduce inter-edge influence, after extracting all possible primitive line

segments in one direction, instead of continuing and proceeding with the next relative

maximum, the Radon Transform is recomputed on the remaining pixels. To guarantee

best accuracy, only the line associated with the maximum Radon coefficient is inspected

at each iteration. This process is recursively repeated until the maximum Radon

coefficient reaches a minimum value corresponding to the integration of two pixels. At

this point, the original edge image is exhausted and no more useful pixels remain

unconverted to primitive line segments.

This transform recomputation slows the algorithm, but not directly in the

proportion of the number of iterations, because the order of the Radon transform at each

iteration becomes smaller too. Its benefit is a more accurate conversion of edge pixels

into primitive line segments in low-definition images once mutual edge-coupling

interference is strongly reduced. A further enhancement in the line extraction is a line-

fitting algorithm based on the minimization of squared distances from pixels in a cluster
to the modeling line (see item IV.C.4 below).

4. Mean Square Error Line Segment Estimator

The Radon line extraction of the segmented edge image just described in IV.C.2,

isolates clusters of aligned 8-connected pixels. For each of these clusters a line segment is

computed by projecting the center of the end-pixels on the line that minimizes the sum of

squared distances to them. If (dj, 60 are the polar coordinates of each of the c pixels Pi in

a cluster, for L(d, 6) a given line, it can be derived that (see Figure 12):

8i = d; cos(0 - Gj) - d (4)

26

L(d,0)

Pi (d,,e,)^.

9i

Figure 12: Treating distances Ej from the center of pixels Pi to the fitting line L as errors
to be minimized by least squares method.

2 2 £j has a quadratic form in d, and it always non-negative. Hence by making
2 ~ 2

32 £j/3d = 0, the distance d that minimizes 2 e, for a fixed angle 6 is:

d = £ di cos(0 - 00 / c
i=l

(5)

~ 2 2
If 9 is an angle that minimizes 2 £,, then 32 q/30 = 0 and we derive:

V di cos(0 - 0i) sin(0 - 00 = d ^ sin(0 - 00 (6)

i=l i=l

Simultaneously searching in 0 and d for minimum in 2 q requires making 0 = 0
in equation (5) and d = d in equation (6). Solving the system of equations formed:

^ c d; cos(0 - 00 sin(0 - 00 = ^di cos(0 - 00 .^ sin(0 - 0j) (7)

i=l i=l

27

Developing (7) gives two possible values for 0:

~ ,-ß±Vß2-4ay N 6 = arc tan (K v^a
L"), (8)

where:

c c C

a = S c di sin(9i) cos(0i) - J £ di sin(0O cos(9j) (9)
i=l i=l j=l

C C C

ß = X c dj (cos2(0i) - sin2(0i)) - £ £ d; (cos(0j) cos(0j) - sin(0i) sin(0j)) (10)
i=l i=i j=i

Y = X Sdicos(0i)sin(0j) - £ c dj sin(0i) cos(0O (11)
i=i j=i i=i

For each trial 0, a value for d is computed by equation (5). The fitting line L(d, 0)

is found by selecting the 0 and d that yield minimum computed 2 Ej through equation (4).

If all pixels were either vertically or horizontally aligned with the reference point C,

quantity a in the above equations would be zero, leaving 0 undetermined. To prevent

that, instead of using the actual center of the image, whose coordinates are always

multiples of 0.5, the polar origin for this computation is momentarily displaced by a

number that is not a multiple of 0.5. After 0 is computed, the polar origin is brought back

to the center of the image, so that the correct parameters for the line segment are

extracted. Situations where a real number for the angle 0 does not exist (ß2 - 4r/y < 0) in

practice will not occur because the Radon Transform masking imposes some a priori
alignment to the pixels.

The missing link to obtain the parametric representation of the cluster of pixels is

the estimation of the endpoints of the line segment on the support line L(d, 0). They are

computed by taking those projections of Pä on L with minimum and maximum (x, y)
coordinates.

28

Figure 13 illustrates the geometry of the line fitting process. Along an edge, the

pixels not selected by the Radon maximum-coefficient mask are left for the next iteration

of the algorithm (black pixels, on the right). The pixels that were fit by the line segment

are removed from consideration for subsequent edges, except the end pixels, which are

spared for newer iterations. This last action helps line segments extracted from

contiguous edges to have endpoints closer to each other, help subsequent building-

contour tracing (see IV.F).

i ■■HI

|

>

2

4

6

81

10

12 h

14

. ^_ Pixels not consumed,
in this step ;

2 4 6 8 10 12 14
PL: P1 = (10.3388,4.5914), P2 = (5.3798,12.6168)

Figure 13: Primitive line segment extraction with Radon masking (light gray) and line
fitting of the enclosed pixels (dark gray).

5. The Overall Effect of the PL Extraction Phase

The final set of primitive line segments visually resembles the edge binary image

when plotted. For the example image of Figure 6, the plot of its 1858 primitive line

segments can be seen in Figure 14. Some isolated groups of pixels were "lost", but this is

actually an additional convenient simplification of the original image.

29

Figure 14: Plotting of the final line segments extracted from the image in Figure 6.

This resemblance is in fact so high that may confuse the observer. Enlarging
corresponding regions of both images (Figure 15), the parametric nature of the primitive
lines becomes apparent.

100

110

120 '

230 240 250 260 270 230 240 250 260 270

Figure 15: Detail comparing edge pixels (left) with computed line segments (right).

30

D. CLUSTERING OF PRIMITIVE LINE SEGMENTS

The typical number of primitive line segments extracted from our test images was

one per 50 pixels. Images of modest size can produce line-segment descriptions with

thousands of lines. The algorithms for higher-level feature extraction, that take line

segments as input, search for combinations of line segments that will match some

positional relationships. This can be very expensive computationally (ö(n) or higher).

To improve computational speed, the initial line-segment set is broken into

smaller-sized sets by a relatively fast clustering algorithm. Since urban areas and

buildings are the main objects of interest, partition sets should be constituted by lines

within blocks, streets being the boundaries. This partition should satisfy the following

constraints:

(i) The line segments of any real-world object should be in the same partition.

(ii) Partitions should correspond to contiguous areas in the original image.

If an algorithm based on the line space search is #(ns), s > 1, pre-clustering the

primitive lines into k groups of m lines will result in reduction of the complexity order of

the problem. The new computational time will be in the order of:

tf(ktf(ms)) = ö(-^Oms)) = tfCnm8"1) (12)

If the number m of lines in each cluster could be limited, the factor ms_1 would be

modeled as a constant, and the application of the higher-level algorithms would be 0(n),

yet the large constant involved ms_1 could make this a "slow" 0(n) algorithm.

0(n m5"1) = m5'1 0(r\) = 0(n) (13)

The algorithm used to cluster the line segments has two steps: First, an undirected

graph G is calculated for endpoints of the primitive line segments. The vertices of the

graph G correspond to line segments and an edge is created if either:

(i) The two line segments touch at some of their endpoints, within the resolution

of the image; or

31

(ii) The line segments are perpendicular to each other, within an angle of 7t/8
radians, and their touching endpoints are closer than the geometric mean of their lengths.

Second, clusters of connected segments are found by looking for connected sub-

graphs of G. Since single-segment clusters are uninteresting, we discard segments that
remained unclustered.

The criterion in (i) is intuitive. The criterion in (ii) was introduced because
perpendicular lines tend to be related in man-made structures. It has the desirable

property of being scale-independent. The criterion of minimum length was also tried, but
did not yield as good results as the geometric mean.

Application of the algorithm to the primitive lines in Figure 14 results in Figure

16, where the partitions obtained are coded in different colors. In this example, of 1858

original line segments, 5% were discarded after being unclustered; the remaining were

clustered into 71 sets with the maximum of 351 and the average of 25 line segments per
cluster. In images tested, the clusters appeared more dependent on the nature of urban
area than either the size of image or the total number of lines extracted.

This gives some support to the hypothesis upon which equation (13) was derived.
Since the algorithm that produces the connection matrix G runs in time of order Ö(n2),
this might also be the order of the global line segment analysis, provided the order of
higher-level feature extraction in the following phases of the analysis is kept at
polynomial order.

32

Figure 16: Clustering of primitive line segments, plotted with assorted colors, for the
image in Figure 4.

E. MERGING OF PRIMITIVE LINE SEGMENTS

The aerial visibility of edges of buildings and other objects may be obstructed by
trees or shade, or may be degraded due to lack of contrast between the object and the
background. This may cause a single physical edge to be segmented into several collinear
line segments. To facilitate the detection of the polygonal shapes that characterize man-
made structures like buildings, we merge close and approximately collinear primitive line

segments.

1. The Merge Procedure

Merging of line segments is accomplished by:

33

(i) Find pairs (Li, L2) of line segments which are oriented in approximately the

same direction, within a maximum heading deviation of A0max, and whose distances to

the center of the image differ at most by Admax.

(ii) Use a relative position criterion to eliminate pairs in a side-by-side

configuration, as exemplified in Figure 17(b). Require that the maximum distance from

an endpoint of Li to an endpoint of L2 be attained at the points that are opposite to those

where the minimum distance is, as in Figure 17(a).

(a)

Figure 17: Examples of favorable (a) and unfavorable (b) relative positions for merge
candidate line segments Li and L2.

(iii) Require also that no other line segment have endpoints lying near the

endpoints of the candidate segments, to prevent the suppression of possible corners (see

Figure 18).

Merge

O

Li

\
-34

Figure 18: The presence of L3 inhibits the merging of aligned segments Li and L2, thus
preserving the junction of Li, L2 and L3; L3 and L4, on the other hand, can be merged.

34

(iv) Eliminate segment pairs failing to satisfy a proximity criterion: The minimum

distance between endpoints of two candidate line segments should be less than the

smaller length of the two line segments. In Figure 17, we must have:

d^n < min{ |I4 |L2| }, (14)

where dnün = min{djj |i endpoint of Li, j endpoint of L2} (15)

(v) Eliminate pairs of segments failing an alignment criterion. Let hyk be the

oriented distance (projection) from endpoint Pw of line segment k to the support line of

line segment j:

hijk = distance(Pid, Lj) (16)

Alignment is met by requiring that the angle subtended by rays through the

endpoints of one line segment and rooted in one endpoint of the other segment be less

than a constant ASmax. Additionally, to avoid the merging of parallel lines, the distance of

endpoints of one segment to the other line should be less than the resolution distance 2\/2

pixels, if these endpoints are in the same side of the plane, with respect to the second line.

In terms of the dy and the hyk, either of the following conditions should apply (see Figure

19) to the pair of line segments (Li, L2):

min{max{|hii2/dii|, |h2i2/di2|}, max{|hn2/d2i|, |h2i2/d22|}} < simASmax) (17)

hn2h2i2>0 => maxflhml, |h2i2|}<2>/T

or

min{max{|hi2i/dn|, |h22i/d2i|}, max{|hi21/d12|, |h22i/d22|}} < sin(ASnm) (18)

hui h22] > 0 => max{|h,2i|, |h22i|} < 2^/T

35

Li

Pii!

212

Figure 19: Alignment criterion for two line segments.

The resolution distance of 2-{l is the maximum distance between any two

points lying in the area of two neighbor pixels in 8-neighborhood. Such a condition is met

when the points are in opposite corners of diagonally touching pixels. The angle AS,^
was determined by trials and fixed at 7i/36 radians.

(vi) Finally, cluster the qualified merge candidate segments in fully connected
sets. Then only merge a set if every pair within that set satisfies the merge criteria. This
will assure a global alignment for the line segments, rejecting the merge of patterns like
(b) and (c) in Figure 20.

Figure 20: In all three clusters, the merging criteria are satisfied by any two consecutive
line segments Li, and no other pairs; however, only the cluster on the left exhibits a
global alignment.

36

2. Overall Merge Effect

Merging the qualified primitive line segments does not affect the general
appearance of the line segment plot, as seen in Figure 14 or Figure 16. But it does
improve the edge extraction, as exemplified in the zoomed detail of Figure 21.

170

130

140;

150

160

170
230 240 250 260 270 230 240 250 260 270

Figure 21: The effect of merging primitive line segments on the contour of a building:
Before merging (left) and after merging (right).

F. SEARCH FOR BUILDINGS

Man-made constructions such as simple buildings and houses usually fit
rectangular shapes well. But more complex buildings are better modeled by closed ortho-
polygonal lines (polygons made of right angles). The detection of these can be
accomplished by looking for cycles in a graph derived from the line segment
representation of the image. In this graph, the vertices are endpoints of the line segments,
and edges will be created where some useful geometric relationship exists between
endpoints, similarly to the clustering phase described in IV.D.

1. Endpoints Graph Formulation

For each cluster Ck containing Nk primitive line segments extracted from the

original image, we define a graph Tk(Vk, GO where:

37

Vk = {v2 , v2 , v3 ,..., v2Nk } is the set of endpoints of the line segments in Ck;

and

Gk = [gy], 1 < i, j < 2Nk is an edge connection matrix for vertices in Vk,

defined according to the type of geometric relationship between Vj and Vj, as follows:

Type 1: gij = 1 <=» Vj and Vj are endpoints of the same line segment;

Type 2: g;j = 2 <=> v; is in the M21 neighborhood of Vj (see Figure 22) but Vj and Vj

(as shown in Figure 22) are not endpoints of the same line segment (proximity criterion);

,y
^

&

v,

v;

Figure 22: The Nlx neighborhood as a criterion for connecting endpoints in the graph Tk.

Type 3: gij = 3 «=» v; and Vj are endpoints of line segments which are

approximately perpendicular, and v; and Vj are closer than the geometric mean of the

lengths of the line segments, but not enough close to be /Y21-neighboors (situation shown
in Figure 23);

d*<mi.|y

|e-7i/2|<7t/8

Figure 23: Connecting endpoints in corner position.

38

Type 4: gy = 4 <=> v; and Vj are endpoints of two approximately perpendicular line

segments and the distance between V; and the line segment containing Vj (or vice-versa) is

less then 2\j2 ;

- d d < 2 \[2 pixel

|e | < 7t/8

Figure 24: Connecting endpoints in "T" position.

Type 5: gy = 5 <=> v, and Vj are endpoints of approximately parallel (within rc/18

radians) line segments which are closer then the minimum of their lengths. Also, the line

passing though v; and Vj should be approximately perpendicular to the two line segments

(within rc/18 radians to the larger line segment).

e„

max{d.., ay} < minflg, |L2|}

min{|0sUeJ}<7t/18

Figure 25: Connecting endpoints of parallel line segments in opposition.

The gij will be zero otherwise, representing that there is no relationship (and thus

no edge in the graph) between endpoints Vj and Vj.

39

2. Finding Cycles in the Endpoints Graph

Building candidates are found by searching for cycles in the graphs Tk using
depth-first search [Ref. 18]. The basic version of this algorithm travels along the edges
until a closed path is found. When it is not possible to travel further, it backs up along the
path until a vertex that offers a path option not tried before is found, and then it follows it.
If backup continues until the initial vertex is found and no more path options remain, then

the search for cycles starting at that node was unsuccessful. The search is restricted so
that the current path should not contain the same edge twice.

Figure 26 shows an example set of line segments and the tree that was generated

for finding a cycle from vi; Figure 27 shows the implicit connection graph used. In this

case, node vi is visited again at the sixth move, at a depth h=6 from the root node.

iV
14

V
13

V V
. 11 12

V.

V,

v1 starting vertex

:ior
Cycle in T: (v,, v2, v8, ve> vs> v,)

'V,

A \
' ^~^ *v* V v. v.

/\ \
v3, v.
\ \

/ \
/ \

V8 v V12 V13
\ \
x \
\ \

Figure 26: Example of standard depth-first search for cycles in graph T.

40

V14 1

Figure 27: Graph T for the set of primitive line segments in Figure 26. Thick edges
correspond to line segments. Thin edges signify other type of geometric relationship.

To guarantee that the searching path does not fold over itself or the cycle collapse

into a double cycle, the visited nodes (except the root node) are prohibited to occur twice

in the path. So are the nodes associated with rejected branching options at a given search

pass. This is called the visited/prohibited rule. In Figure 27 for instance, after jumping

from v2 to v8, nodes vn and vn, as well as node v2 itself, become prohibited for that path.

Because of the visited/prohibited rule, the other extremity of the line segment of

the starting node will always be included in the cycle, if a cycle is found. The line

segment containing the starting node is referenced as the starting edge.

To prevent finding the same cycle multiple times, a list of remaining candidate

edges is kept. Every time a cycle is found, their edges are removed from this list.

3. Enhanced Cycle Search

The computational cost to find all the cycles in a graph is high. To limit the search

to cycles likely to correspond to building perimeters (those of smaller total lengths), we

modified the base algorithm:

(i) The number of vertices in a path having alternative directions (three or more

edges) is limited by a maximum.

41

(ii) A move from a node v; is restricted to be along edge (VJ, Vj), if gjj=l in the
connection matrix and Vj is not yet discarded by the visited/prohibited rule. Particularly,
the first move away from the root node will always traverse an existing line segment.

(iii) At every node, the jumping options (edges in T) will be sorted according to
the increasing Euclidean distances from the other endpoints of the associate line segments
to the starting node. The first branch to be depth-searched will be the one containing the
node that minimizes that distance and so on.

4. Elimination of Spurious Cycles

To eliminate likely spurious cycles, the algorithm discards all cycles that contain

some other cycle, or that the set of constituent line segments of a given cycle is a subset
of those of another cycle.

5. Cycle Filtering for Buildings

Independently of scale, some cycles are more likely to represent buildings than
others (see Figure 28).

/ \

Figure 28: Example of possible detected building candidates from cycles in T. Intuitively,
the first on the left is not likely to be a building while the two on the right are.

42

To select buildings among the extracted polygonal paths, some building-

likelihood measures are computed from the following assumed properties:

(i) The major part of the polygon perimeter should coincide with (i.e., intersect)

original primitive line segments;

(ii) Most of the lateral faces of buildings should be either parallel or perpendicular

to largest face of the building; and

(iii) The larger the lateral faces, the less deviation they should exhibit from either

the parallel or the perpendicular directions to the largest face of the building.

Deviation of each of these properties from an ideal can be measured. If the
building has an unusual shape such as an equilateral triangle or a pentagon, these

properties will not hold, but this is not a likely case.

Figure 29 shows an example using the polygon (Qi, Q2,..., QM) obtained from the

cycle (P11, P12,..., PMI, PM2>-

QI-^

Figure 29: Analysis of polygonal paths formed derived from line segments.

43

Defining PM+i = Pi and QM+1 = Qx the three measures are defined as below:

(i) Unsupported perimeter fraction:

f = 1

I
k=l

PkiPk2 nQkQk+i |

M

S |QkQk+i|
k=l

(19)

(ii) Average weighted non-orthogonality factor:

M

I
k=l
X |QkQk+i|.sin(2|ek - 6i*| mod 7i/2)

w =
M

(20)

X |QkQ: k+i

k=l

(iii) Maximum weighted non-orthogonality factor:

max{|QkQk+i|. sin(2|0k - 6i*| mod7t/2)

wn (21)

max{|QkQk+i|}

where i* in equations (20) and (21) is such that |Qi*Qi*+i| = max{|QkQk+i|}.

44

All these measures range in the interval [0,1]. The closer each is to zero, the more

likely that the polygon Q is associated with a building. Higher values of these deviation

measures are more acceptable with cycles made of fewer segments. So the detection of

buildings will require thresholds 3>f, <3>w and 3>Wmax that are non-increasing functions of
the number n of line segments in the cycle. Reasonable functions yielding good

performance were experimentally determined as shown in Figure 30.

1

0.8

0.6

0.4

0.2

0

0.9 n < 3 n = 4

0.70

5 < n < 9

Wmax 0.35

n > 10

0.30

-

0.50 W

-

0.25 f 1 *•"!

m, I 0.20

i i

0 2 4 6 8 10

n, number of primitive line segments forming a polygon.

12

Figure 30: Threshold functions experimentally determined for the computed unsupported
perimeter fraction (f), the average weighted non-orthogonality factor (w), and the
maximum weighted non-orthogonality factor (wmax).

Figure 31 shows example results of the cycle detection phase. Cycles that satisfy
the thresholds for all the three thresholds are filled in black; the others are plotted
unfilled. The latter were often found to correspond to non-building man-made structures,

like parking lots, open-sky storage areas, or blocks of houses.

45

Figure 31: Detected segment cycles in the image of Figure 16; building-like cycles are
filled in black.

6. Merging Component Cycles of Buildings

Complex buildings and clusters of buildings will often appear as adjacent and
overlapping cycles. So in a final step, all component cycles with non-null intersection
(i.e., sharing some line segment) are merged, producing a target table (like Table 2).
Entries are the coordinates of the center of mass of each building cluster, its estimated
area, average pixel luminance, and standard deviation of the pixel luminance.

I Building Cluster List for Image in 'H:\MRY\MRYl.tif |
+ + + + + + +

| Target ID | Coord I | Coord J | Area (m2) | Av Lum | Std Dev Lum |
+ + + + +

| 00001
j 00002
j 00003
I 00004

j 00075
+

| 194.8 253.1 |
| 234.9 245.3 |
| 78.4 235.1 |
| 115.9 211.8 |

| 99.3 216.8 |

62 33.2 |
328 74.4 |
78 170.0 |

146 132.2 |

89 98.7 |
-+ + +

23.3 |
30.5 j
37.3 j
41.1 j

 I
37.5 j
 +

Table 2: Example target table produced by the program, listing the probable building
clusters found in Figure 4 and properties.

46

In this simplified approach, shadow detection is not implemented, and shadows

may be included with building clusters. This is a problem only if the sun angle is low
relative to the building height/length ratio and the shadow is aligned with a face of the
building. Otherwise, the cycle containing that shadow will have its non-orthogonality
factor increased, which will tend to cause its rejection in the cycle filtering phase

(explained in IV.F.5).

In Figure 32, recognized building clusters are shown with homogeneous random

color. A white cross is placed at the center of each cluster. A total of 75 clusters were

formed from 97 detected cycles.

Figure 32: Plot of recognized probable building clusters, after merging of component
cycles. Random colors are assigned to clusters for improved visualization.

47

G. USING NEURAL NETWORKS

1. False Alarm Reduction with Neural Networks

The Of, <&w and <E>Wmax thresholds functions (see Figure 30) that help recognize a

building cycle were chosen heuristically. If enough training images are available, we

could improve building cluster recognition by training a feed-forward artificial neural

network (Multi-Layer Perceptron) for the task [Ref. 19], as shown in Figure 33. The

network could take as inputs at least the quantities f, w , wmax defined in equations (19)

through (21), and n, the number of line segments, yielding binary outputs Cj to distinguish

classes of similarly orthogonal-shaped man-made objects.

Multilayer Perceptron

Maximum Finder
Layer

N-to-C Encoder

Figure 33: Classifier architecture using neural networks for the classification of cycles in
the endpoint graph.

When edges along the contour of an object are so degraded that no cycle around it

is found, this architecture would not be helpful. So the neural network would only

significantly reduce the false alarm ratio, not the miss ratio.

48

2. Selecting More Parameters for the Classification of Cycles

Other features associated with the region enclosed by the detected polygon could

be used as inputs for the neural network to improve its performance:

(i) Size-related features, for example: area of the region, perimeter, moment of

inertia radius, maximum distance from center of inertia, and circumvention radius.

(ii) Luminance-related features: total brightness, average brightness, estimated

standard deviation of the brightness, displacement of brightness center (mass center

weighted by luminance) from mass center, and moment of inertia radius using the

brightness as the density function.

(iii) Other shape related features: the ratio of the maximum and minimum

coefficients of the Radon Transform of the object, the ratio of the moment of inertia

radius to the circumvention radius, the ratio of the displacement of center of brightness to

circumvention radius ratio, and the sphericity, defined as four times the area divided by

the square of the perimeter.

Preliminary tests [Ref. 20] showed promising results with neural networks for

feature analysis and classification of objects in aerial photographs. In this study,

buildings, road sections and trees were correctly differentiated in essentially all cases

tested (10 buildings, 10 paved road sections, 10 unpaved roads, and 10 trees), with only a

slight confusion occurring in between paved and unpaved roads. For meaningful results

however, much larger training and validation data sets need to be used.

A neural network could also recognize shadows of objects. This would improve

the accuracy in the estimation of the center of mass of each building cluster, and could

also facilitate the three-dimensional modeling of the scenario.

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

V. RESULTS FROM EXPERIMENTATION

A. QUALITY ASSESSMENT OF THE MODEL

The quality of the recognition of building clusters can be evaluated by two error

measures: The false alarm ratio (false positive recognition) and the miss ratio (false

negative recognition). The first is obtained by dividing the number of incorrectly labeled

building clusters by the total number labeled; the second, by dividing the total number of

building clusters not recognized by the total number of building clusters. Both numbers

should be zero for a perfect recognition. Because the resolution of the NAPP images is

only slightly better than the minimum necessary for recognition of buildings (see section

II.F.l), houses and small buildings were not counted (when missed) in evaluating our

automated analysis.

Appendix A contains the detailed description of the primary test image used

(Figure 4). This image includes residential areas as well as public, commercial and

industrial buildings. Two small regions had to be excluded from the results due to

unavailability of reference data. The reasons in these two cases were:

(i) Part of a block was completely remodeled since the photograph was taken six

years ago, and we could not recover the original layout of that area; and

(ii) One small area (south of US Highway 1), of difficult access for a walk-

through visit, was not inspected.

The recognition statistics for building clusters are summarized in Table 3. The

false positive (ep) and false negative (en) recognition ratios were then 0.133 and 0.177

respectively, similar to those obtained by others using different edge-based techniques

[Ref. 21, 22].

Number of building clusters correctly recognized

Number of building clusters incorrectly recognized

Number of building clusters missed (i.e., not recognized)

nc = 65

nw= 10

nM=14

Table 3: Summary of performance of our building recognition technique.

51

1. False Negative Errors

False negative errors (missing buildings) can be one of the following:

(i) errors due to deficient primitive line-segment extraction;

(ii) errors due to splitting of line segments of a building at cluster boundaries; and

(iii) errors due to oversimplification in the cycle-filtering criterion.

Errors of type (i) were due to the limitations of the edge extraction algorithm
(Canny's). When edges are interrupted along the sides of buildings in consequence of

lack of contrast or obstacles, the line segments extracted will be fragmented, and the

building may be missed. And with too-small structures, the corners tend to be rounded,

interfering with the line-segment extraction. An example is buildings i and j in Figure 34.

This error was the cause for 50% (7/14) of the missing buildings (a, c, e, h, i, j and 1), and
could be reduced by improving the edge-finding algorithm.

■ .-.'-.■ . ■

Figure 34: Detail showing examples of missing buildings (i and j) due to defective line
edge and line segment extraction.

Errors of type (ii) are due to imperfect line-segment clustering preceding
connectivity analysis of the endpoints graph. Figure 35 shows a sequence of steps causing

52

failure to recognize buildings b and d. Since cycles are only searched within each cluster
of line segments, problems occur when a building contour is split into different clusters.
These errors, responsible for 14% (2/14) of the missing buildings in the tested image,
could have been eliminated if the line segment clustering were suppressed, but then the

complexity of the algorithm would increase considerably.

Figure 35: Examples of missing buildings (b and d) due to the splitting of perimeter line
segments at cluster boundaries.

Finally, errors of type (iii) which account for 35% (5 /14) of the misses and a 6%
of the overall false negative recognition ratio, seem to be intrinsic to the devised cycle
filtering algorithm. To eliminate them a major modification in the algorithm is necessary.

2. False Positive Errors

All the false positive errors were entities with contours of plausible building
shapes: Three wooded road divider sections (targets id 50, 51 and 52), two parking lots
(targets id 30 and 64), one partially fenced private drive (target id 66), one tree
surrounded by a paved path on the corner of a block (target id 1), one school playground
(targets id 37), and two square bare ground areas (target id 65 and 71). All of these except
the last two were man-made structures, which makes the errors less serious. These errors
were to be expected, for the algorithm used does not consider luminance, texture, or
relationships to others neighbor structures, all of which could improve performance.

53

B. OTHER ERROR MEASURES

Beyond the correctness of the building recognition, the correctness of position

determination also matters. In our experiment the field determination did not include the

precise position and area of the buildings in the testing data set. However, we did confirm

that all estimated centers of targets were within the respective actual building clusters.

C. IMPLEMENTATION ISSUES

All the programs were implemented in Matlab version 5.3, running under the

Windows NT 4.0 operating system, a language that offers an interpreter command

interface and debugging facilities. All the images were stored in the uncompressed gray-

level Tagged Image File Format (TIFF), a widely used bitmap file format.

The edge-based approach for finding buildings is computationally expensive. For

instance, roughly 2 million operations are required to find a single 51x51 pixel square

pattern in a simple test image of 100 x 100 pixels (see Figure 36).

20

40
1

60

80

-inn
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

Figure 36: Testing the algorithm on a simple artificial image: test pattern, extracted
edges, and recognized shape.

For the main testing image used (Figure 4), 340 x 260 pixels in size and

approximately 3 square meters per pixel, the number of necessary operations to complete

the algorithm was of 7.4 x 108, including the graphic output. Running Matlab on a

Pentium II processor at 266 MHz with 64MBytes of memory (about 72,000 sustained

floating-point operations per second), this computation took 2 hours and 50 minutes. If a

54

compiled version of the system could be implemented and run on a 1 Mflops platform, a
modest computing performance for today standards, the system should process around

380 square meters of urban area per second. We have focussed however on the

algorithms, not optimization of the code; much could be done to improve the efficiency

and the speed of the programs.

In total, about 4000 lines of source code were created to implement the algorithm,
including comments and not including the source code of the powerful Matlab libraries

used. Program listing is included in Appendix B.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

VI. CONCLUSIONS

An algorithm for finding building clusters in orthorectified aerial photographs was
implemented and tested on an urban area. The technique used was based on the

connectivity analysis of a graph derived from the geometric relationships among
endpoints of line segments that model edges; the segments were extracted from the image

with the Radon Transform. The connectivity analysis reveals cycles in the graphs that,
once filtered for spurious closed paths, indicate candidate buildings.

The 2-meter panchromatic resolution of the test image is barely enough for a

human expert to recognize the smaller buildings. Under these conditions, the obtained
false alarm and miss ratios were respectively 13% and 18%, not counting errors on
houses and very small buildings. Although not perfect, these figures should be able to
reduce substantially the workload of human analyst in a computer-aided environment.

Automatic aerial image analysis is a complex problem. The complete validation
of the algorithms and ideas proposed here requires more testing sets and extended
conditions. In our tests, the dominant cause for false negative errors (misses) was the
edge detection algorithm (Canny's), while the false positive errors where due to the
assumption that shape alone can determine buildings. We believe that our edge-based
recognition of man-made structures will produce better results if combined with region-
based techniques. One way to correct this is the consideration of luminance information,
perhaps by using a feed-forward neural network for postprocessing.

While the speed of our algorithm may be disappointing, due to the number of
mathematical operations involved, there is much parallelism opportunity do be exploited
that could make it much faster. It also could be helpful the introduction of a line-segment
pruning step before the clustering of primitive line segments, to decrease the contour
density, similarly as done by Paparoditis et Al. [Ref. 23].

With the increasing availability of high-resolution imagery from both military and
commercial sensors, better resolutions that 2-meter will soon be abundantly available.
Since we can recognize buildings even at coarser resolution with our approach, it should
be able to recognize additional details within buildings and other man-made structures
when using higher-resolution images.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

APPENDIX A. EXPERIMENT NOTEBOOK

Figure 37 shows the building clusters detected in the test image (Figure 4).

Statistics on them are shown in Table 4.

200

250

Figure 37: The 75 building clusters found in Figure 32 by our program.

Building Cluster List for Image in 'H:\MRY\MRYl.tif
 + + + + +
Target ID | Coord I | Coord J | Area (m2) | Av Lum | Std Dev Lum

00001 194.8 253.1 |
00002 234.9 245.3 |
00003 78.4 235.1 |
00004 115.9 211.8 |
00005 139.5 157.3 |
00006 199.3 183.8 |
00007 253.9 213.6 |

62 33 2 I
328 74 4 |
78 170 o 1

146 132 2 I
57 235 6 1
46 99 •9 1
51 65 .5 |

23.3
30.5
37.3
41.1
17.7
28.7
26.1

59

I Target ID |
+ +.

00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058

Coord I | Coord J | Area (m2) | Av Lum | Std Dev Lum |

146.3
112.7
146.7
124.0
189.2
208.6
232
225
109
128
139
164
174
133
146.8
94
91

173
155
105
92

134
140.9
170.3
195
173
164
191
213
196
87
81
90
41

103
71
67
52.9
34.2
58
10
15

164
76

149
76
61
66.3
85.0
7.2
4.9

.1

.0

.6

.1

.5

.6

.7

.7

.3

.5

.7

.5

.5

.5

.2

.7

.3

.2

.1

.0

.6

183.5
194.7
223.5
218.2
226
202
180
188
292
273
282
272
287.0
314.2
246.1
256
278.
248.
260.
247.
327.
237.
327.
97.
97.
7.

131.8
109,
57.
72.4
12.4
79.9
68.2
29.3
38.6
13.8
98.2
58.7

114.0
181.6
129.8
160.
57.

198.
84.

122.3
312.5
285.4
314.8
66.7
5.0

.0

.9

.0

.2

1689 | 187.2 |
402 | 154.9 |
352 | 174.6 |
51 | 146.5 |

2766 | 178.5 |
382 | 78.1 |
276 129.1 |
48 103.8 |

607 143.7 |
333 73.8 |
177 203.1 |
391 235.7 |

2400 182.8 |
838 202.8 |

1884 194.8 |
946 243.1 |
794 231.2 |
192 63.0 |
108 188.7 |

1114 220.3 |
105 226.4 |
81 134.6 |

155 70.3 |
174 66.2 |
189 226.6 |
116 203.8 |
48 124.3 |

109 227.9 |
2622 223.1 |
350 221.6 |
206 154.3 |
195 j 95.0 |
220 | 66.4 |
89 | 106.0 |

298 | 101.0 |
108 | 174.0 |
131 | 44.1 |
333 | 91.7 |
361 | 70.3 |

2703 | 206.3 |
355 | 126.4 |
87 | 131.6 |

108 | 72.0 |
1442 | 47.9 |
451 | 30.4 |
130 | 91.8 |

1328 | 229.5 |
98 | 105.6 |

152 | 140.6 |
70 | 93.0 |
95 | 79.8 |

80.0
29.7
25.2 |
43.4 |
91.5 |
45.1 |
52.2 |
39.3 |
29.2 |
23.0 |
58.9 |
38.0 |
40.7 |
43.4 |
62.6 |
31.4 |
32.5 |
24.0 |
56.9 |
52.3 |
23.0 |
44.0 |
24.2 |
21.7 |
46.2 |
53.1 |
38.0 |
33.8 |
40.1 |
37.4 |
32.9 |
37.6 |
28.2 |
40.1 |
48.4 |
37.8 |
37.1 |
31.7 |
36.5 |
49.1 |
38.9 |
49.9 |
23.2 |
29.3 |
19.0 |
29.2 |
44.0 |
15.5 |
47.5 |
33.6 |
32.1 |

60

+ + +-
I Target ID | Coord I | Coord J Area (m2) Av Lum Std Dev Lum

| 00059 31.7 47.1
| 00060 7.8 60.8
[00061 24.8 29.4
t 00062 124.7 40.8

00063 111.3 31.9
00064 47.0 231.2
00065 24.9 226.1
00066 248.5 99.6
00067 16.3 82.5
00068 18.2 132.6
00069 26.6 134.8 |
00070 244.1 315.2 |
00071 9.5 225.2 |
00072 106.7 201.3 |
00073 182.9 258.6 |
00074 95.0 222.6 |
00075 99.3 216.8 |

150 135.5
74 92.9

299 72.0
122 59.5

38 77.6
154 192.8

84 107.1
82 45.5

117 109.1
46 46.6

138 56.8
198 71.6

57 92.1
120 78.5

52 50.3
36 41.3
89 98.7

35.2
30.3
44.3
14.9
20.6
38.0
43.5
17.8
34.1
24.
18.
33.
36.
32.1
22.2
24.7
37.5

.2

.3

.0

.2

Table 4: Target table automatically produced by program
Figure 37. I and J coordinates define the center of mass of
the area in squared meters, the average pixel luminance, and
pixel luminance.

Target ID refers to labels in
the cluster, other entries are
the standard deviation of the

After a field survey, the following facts were established (see Figure 38):

(i) Of the 75 targets found, 10 did not correspond to any kind of building, building

cluster, or housing area (false positives). These are given in Table 5:

Target ID Description

1 Tree surrounded by squared path on the corner of Encina Ave.

30 U-Haul parking lot, full of trucks parked in parallel at time of survey.

37 Del Monte Elementary School playground (rectangular, bare ground).

50 Section of road division lot with trees (boulevard) at Del Monte Ave.

51 Section of road division lot with trees (boulevard) at Del Monte Ave.

52 Section of road division lot with trees (boulevard) at Del Monte Ave.

64 Parking lot with bare ground terrain.

65 Square shaped bare ground terrain partially surrounded by fence.

66 Private drive delimited by fence.

71 Square shaped bare ground terrain.
Table 5: False positive building detection.

61

(ii) Among the remaining 65 patterns correctly identified, those which are not

housing areas are listed in Table 6:

Target ID

10

12

16

17

18

19

20

21

22

23

24

26

27

28

29

31

32

33

35

36

47

Description

Annex of Willie's & Fraley Auto Repair (2232 Del Monte Ave.)

Dairy Producers Office

Advantage Auto Repair & Muffler

Tileco Ceramic (2110B Del Monte Ave.)

Greg Bean Auto Servicing (2200 Del Monte Ave.)

Ewing Irrigation Products

Store USA main building

McCuhe Audio-Visual

Allied Storage Warehouse

Wilson's Plumbing And Heating

C & C Repair

Miller Moving & Storage Co. (on Dela Vina Ave.)

Miller Moving & Storage Co. (on Ramona Ave.)

Allied Van Lines

Willie's / Fraley Auto Repair

Redwood Heating

Hubbard Plumbing

Moving & Storage Wermuth & Cahoon

Foreign Affairs office

Old garage for Allied (now demolished, but present at time of photo)

Aquarius Dive Shop

Del Monte Elementary School Building

Monterey Ironworks Annex

Del Monte Elementary School Building

Del Monte Glass

Mans (2101 Del Monte Ave.)

62

56

72

75

United Rentals

Dairy Producers Office

Dairy Producers Office

Table 6: Commercial and industrial buildings correctly detected.

(iii) Some major non-residential buildings were also missed (false negatives).

They are listed in Table 7 below:

Target ID

m

Description

Skate Arena

Monterey Ironworks main building

Linda Motel

Natale's Auto Service

Del Monte Elementary School Building

Del Monte Elementary School Building

Del Monte Elementary School Building

Del Monte Elementary School Building

Monterey Gymnastics (220 Dela Vina Ave.)

Storage USA Annex

Dairy Producers wooden roof open storage

Conte's Auto Repair

ABC Glass

City Community Chapel

Table 7: False positive building detection.

(iv) The dashed area on the northeast block delimited by Del Monte Ave. and

Ramona Ave. suffered recent remodeling; old constructions were demolished and newer

buildings were erected since the year of the photo (1993). So all events inside that area

were ignored. An area at south of US 1 was also ignored because of the difficulty of

access.

63

In Figure 38, building clusters are plotted with a color schema for easy
visualization of the results, in a similar way to that used in [Ref. 24]. Those identified
with letters and painted in blue are buildings missed. Those in red are those erroneously

recognized (false alarms). Areas in green are correctly recognized buildings, building
clusters or other housing.

100

150-

200-

250

250 300

Figure 38: Reference information for the scene.

Summarizing, from the 75 patterns recognized as buildings or housing structures,
only 65 were actually buildings, while 14 other relevant buildings (non-residential) were
missed. At the marginal resolution of the image, false negative recognition of small

buildings such as residential houses should not be penalized. This gives a rough estimate
of false positive recognition ratio of (75 - 65) / 75 = 13% and a false negative recognition
ratio of 14/(65+ 14) = 18%.

64

APPENDIX B. PROGRAM LISTING

function [BuildingCluster, PLCluster, totalElapsedTime, numOps] = ...
find_building_clusters(FilePath, FileName, pixelLength,...
logResultsFlag)

%
% Usage:
%
% [BuildingCluster, PLCluster, totalElapsedTime, numOps] = ...
% find_building_clusters(FilePath, FileName, pixelLength, logResultsFlag)
%
%
% Description:
%
% Finds probable building clusters in an orthorectified aerial
% image given by the gray scale TIFF file called 'FileName'.
%

%===%
% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS. %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% % '
%===%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'find_building_clusters.m'
% (Main function call for the building finding routine)

FlopsO = flops;

TimeO = clock;

global CornerLookUpTable BifurcLookUpTable FillStraightGapsLookUpTable
createCornerLookUp

global logResults
logResults = logResultsFlag,-

global BTotal

% limit value of differencial angle to be considered paralel/orthogonal:
global cosParalelLimit cosParalelLimitForEquiv limitDist
global cosColinearLimitl cosColinearLimit2 tanLimitForMerging SINMAX1 SINMAX2

global WorkingDirectory

% initialization of constants

65

cosParalelLimit = cos(5.5*pi/180); % +/-5.5 degrees
cosParalelLimitForEquiv = cos(15*pi/180); % +/-10 degrees
tanLimitForMerging = tan(20*pi/180);
limitDist = 2;

% define 1 to plot contours, 0 not to plot.
showContours=l ,-

% set working directory
WorkingDirectory = FilePath;

% read image TIFF file
A = imread([FilePath FileName] ,'tif) ;

Phasel % Edge extraction from image: B{} < edge(A)

Phasen % Extract primitive lines from e dges: PL < primitives(B{})
% load ([FileName ' . Phasen .mat']) ;

PhasellA % Cluster primitive lines: PLCluster < PL
% load([FileName '.PhasellA.mat']);

for PLClusterNumber=l:length(PLCluster),
PL=PLCluster{PLClusterNumber};

Phaselll % Enhance primitive lines: PL < enhanced PL

PLCluster{PLClusterNumber} = MergedPL;
end

figure(8)

plotwithlines(A,PLCluster,mod([1:size(Clusterization,2)],2)+1,colors);

numBuildingsInCluster = zeros(1,length(PLCluster));
disp('
');
disp(['Begining of building search phase for image in: "' FileName '"'])

for PLClusterNumber=length(PLCluster):-l:l,
PL=PLCluster{PLClusterNumber};

% PhaselVA: Find cycles in PL graph
[PL, loop, PLinLoop, DecomposedPLLoops, Indexes,...

contourLoop, supportedFraction, shaperErr, errMax, IJCoordinates] =
PhaseIVA(A, PL, logResults, FileName, PLClusterNumber);

PLCluster{PLClusterNumber}=PL;

numBuildingsInCluster(PLClusterNumber)=length(contourLoop);

if numBuildingsInCluster(PLClusterNumber) > 0
title(['Cluster ' int2str(PLClusterNumber) ' of '

int2str(length(PLCluster))...
': ' int2str(length(contourLoop)) ' Building candidates found.'])

% paused)
end

for bNum=l:length(contourLoop),

66

CandidatePolygon{PLClusterNumber,bNum} = contourLoop{bNum};
shapeError{PLClusterNumber,bNum} = shaperErr{bNum};
shapeMaxError{PLClus terNumber,bNum} = errMax{bNum};
sFrac{PLClusterNumber,bNum} = supportedFraction{bNum};
PLinPolygon{PLClusterNumber,bNum} = PLinLoop{Indexes{bNum}};
cycleSummary{PLClusterNumber,bNum}=loop{Indexes{bNum} };

end
end

debugMode=0;
PlotWithImageInBackground=0;
PlotContourOnly=l;

[Building, figHandle] = ...
selectbuildingcandidates(A, PlotWithlmagelnBackground, PlotContourOnly,

CandidatePolygon, PLinPolygon, cycleSummary, shapeError,
shapeMaxError,...

sFrac, numBuildingsInCluster, size(A), debugMode);

paused)
Building

if logResults
hgsave(gcf, [FileName '.Buildings.Fig'3);
save([FileName '.PhaselVA.mat'])
% print

end

% load([FileName ' .PhaselVA.mat']) ,-

figure(8)

% Analyze building clusters
imageBackground = 1 ;
numberPlot = 1 ,-

[NumberOfBuildingClusters, BuildingCluster] = ...
PhaseVA(A, imageBackground, Building, PLCluster,...
pixelLength, FileName, 0, numberPlot)

% measure performance

Flops1 = flops;

Timel = clock;

totalElapsedTime = etime(Timel, TimeO);
numOps = Flopsl - FlopsO;

disp(['Total elapsed time = ' num2str(totalElapsedTime) 's'])
disp(['(' num2str(numOps) ' float point ops @ ' ...

num2str((numOps)/(totalElapsedTime*1000)) ' kflops)'])

% End of file 'find_building_clusters.m'

67

function PL = bestline(r, rCenter);
%
% function PL = bestline(r, Center);
%
% PL = [theta, d, base, LimitI, LimitJ]'
%
% Description: Computes the best line passing through the on-pixels
% in binary image r, minimizing the sum of the squared
% distances from pixels to the line. 'Center' is the
% point used as a reference for computing 'd' and the
% base point 'base'. 'ELRatio' is a measure of the
% quality of the adjustment.

% ===========================%

% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% . %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
* %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'bestline.m'

% find the non zero pixels:
[ISet, JSet] = ind2sub(size(r),find(r>0)) ;
P=[ISet JSet];

% compute n number of non zero pixels
n=size(P,l);

% Avoid integer center coordinates guarantee A is not 0
Center = rCenter - sqrt(2)/2;

% find distance of each pixel to Center
Disp=P-ones(n,1)*Center;
D=sqrt(sum((Disp.*Disp)')) ' ;
% find the sin & cos of each pixel
SinP=Disp(:,2)./D;
CosP=Disp(:,1)./D;

ThetaP=atan2(SinP,CosP);
% Angle in degrees = 180*ThetaP/pi

% consider the oriented distance to each pixel
D=-D.*sign(Disp(:,1).*CosP + Disp(:,2).*SinP);

% repeat for rCenter
% find distance of each pixel to Center
ActualDisp=P-ones(n,l)*rCenter;
ActualD=sqrt(sum((ActualDisp.*ActualDisp) ')) ' ;
% find the sin & cos of each pixel

68

ActualSinP=ActualDisp(:,2)./D;
ActualCosP=ActualDisp(:,1)./D;
ActualThetaP=atan2(ActualSinP,ActualCosP);
% consider the oriented distance to each pixel
ActualD=-ActualD.*sign(ActualDisp(:,1).*ActualCosP +
ActualDisp(:,2).*ActualSinP);

% compute the best tangent of the best angle
% by solving a degree two equation A.t2+B.t+C=0
DCos=D.*CosP;
DSin=D.*SinP;
nDSinCos=n*sum(DCos.*SinP);
A=nDSinCos-sum(sum(DSin*CosP')) ;
B=n*sum(D.*(CosP.*CosP - SinP.*SinP)) - sum(sum(DCos*CosP' - DSin*SinP'))
C=sum(sum(DCos*SinP'))-nDSinCos;
if A<0

A=-A;
B=-B
C=-C

end

SDelta=sqrt(B*B-4*A*C);
theta=[atan2(-B-SDelta,2*A) atan2(-B+SDelta,2*A)]' ;
% 180*theta/pi

d=zeros(2,1) ;
for k=l:2,

d(k)=sum(ActualD.*cos(theta(k) - ActualThetaP))/n;
end

% two hypotesis are to be tested:
% (theta=theta(l) andd=d(D) or (theta=theta(2) and d=d(2))
error=zeros(2,1) ;
e=zeros(n,2);
e(: ,D=ActualD.*cos(theta(l)-ActualThetaP) - d(l) ;
error(l)=e(:,l)'*e(:,D;
e(:,2)=ActualD.*cos(theta(2)-ActualThetaP) - d(2);
error(2)=e(:,2)-*e(:,2);

[eSort, elndex]=sort(error);
kMin=eIndex(l);
theta=theta(kMin);
d=d(kMin);

uTheta = [-sin(theta) cos(theta)];
base = rCenter - d*[cos(theta) sin(theta)];

% compute de projection of the points on the best line
Y=-ActualDisp(:,1);
X=ActualDisp(:,2);
YSinXCos=Y*sin(theta) + X*cos(theta);
XProj=cos(theta)*YSinXCos - d*sin(theta);
YProj=sin(theta)*YSinXCos + d*cos(theta);
LimitX=[min(XProj) max(XProj)];
LimitY=[min(YProj) max(YProj)];
if theta<0

LimitY=fliplr(LimitY);
end
LimitI=rCenter(1)-LimitY;
LimitJ=rCenter(2)+LimitX;

69

iProj =rCenter(1)-YProj;
j Proj =rCenter(2)+XProj;

PL = [theta d base LimitI LimitJ]';

if abs(theta)<pi/4
pattern=sign(e(:,kMin));

else
[ISetSorted, IndexSortingI]=sort(ISet) ;
pattern=sign(e(IndexSortingI,kMin));

end

E=max(abs(e(:,kMin))) ;
ELRatio=E/lengthOfPL(PL) ;

% if debugging, uncomment the line below:
% plotAdjustment(r,E,ELRatio,LimitI,LimitJ,ISet,JSet, rCenter, iProj,jProj) ;

function plotAdjustment(r, E, ELRatio, LimitI, LimitJ, ISet, JSet,...
Center, iProj, jProj)

%
% plots the resulting line segment
%
%subplot(122)

elf
% r2 = uint8(3*double(r)+16*(double(auxSeg)-double(r))+double(bigMask));
% imagesc(r2,[0 20])
imagesc(r,[0 2])
colormap(l-gray)
axis image

% axis([min(JSet)-0.5 max(JSet)+0.5 min(ISet)-0.5 max(ISet)+0.5])
% axis([min(JSet+l)-1.5 max(JSet+l)+1.5 min(ISet+1)-1.5 max(ISet+l)+1.5])
hold on
h=line(LimitJ,LimitI);
set(h,'Color',[0 0 0]);
set(h,'LineWidth',2);

for k=l:length(ISet),
h=line([JSet(k) jProj(k)],[ISet(k) iProj(k)]);
set(h,'Color',[0 0 0]);
set(h,'LineWidth',1);

end

xlabel(['PL: PI = (' num2str(LimitI(1)) ', ' num2str(LimitJ(l))...
'), P2 = (' num2str(LimitI(2)) ', ' num2str(LimitJ(2)) ')'])

% End of file 'bestline.m'
=%

70

function b=fillStraightLookUpFun(x)

% Description: Computes lookup table for use in detecting special
% points of the edge image
% 14 7
% x 2 5 8
% 3 6 9

%
% COMPUTER-AIDED RECOGNITION OF
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS
%
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe
%
% Department of Computer Science
% Naval Postgraduate School, September 1999
%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'bifurcLookUpFun.m'

%-

% 'Y' configuration
pl=[0 1 0; 0 1 0; 10 1];
p2=rot90(pl)
p3=rot?0(p2)
p4=rot90(p3)

% 'Y+' configuration
ql=[0 1 1; 0 1 0; 1 0 1];
q2=rot90(ql)
q3=rot90(q2)
q4=rot90(q3)

% 'Y++' configuration
rl=[l 1 1; 0 1 0; 10 1];
r2=rot90(rl)
r3=rot90(r2)
r4=rot90(r3)

% 'Y45' configuration
Sl=[l 0 0; 0 1 1; 0 10];
s2=rot90(si)
s3=rot90(s2)
s4=rot90(s3)

% 'T45' configuration
wl=[l 0 0; 0 1 0; 10 1]
w2=rot90(wl)
w3=rot90(w2)
w4=rot90(w3)

% 'T' configuration
zl=[l 1 1; 0 1 0; 0 10];
z2=rot90(wl);

71

z3=rot90(w2);
z4=rot90(w3);

% 'X' configuration
tl=[0 1 0; 1 1 1; 0 10];
t2=[l 0 1; 0 1 0; 10 1];

b=(sum(x(:)==pl(:))==9)|(sum(x(:)==p2(:))==9)|(sum(x(:)==p3(:))==9)I(sum(x(:)==
p4(:))==9)I... '

(sum(x(:
(:))==9)

(sum(x(:
(:))==9)

(sum(x(:
(:))==9)

(suro(x(:
(:))==9)

(sum(x(:
(:))==9)

(sum(x

==ql(:))==9)

==rl(:))==9)

==sl(:))==9)

==wl(:))==9)

==zl(:))==9)

(sum(x(:)==q2(:))==9)

(sum(x(:)==r2(:))==9)

(sum(x(:)==s2(:)>==9)

(sum(x(:)==w2(:))==9)

(sum(x(:)==z2(:))==9)

(sum(x(:)==q3(:))==9)

(sum(x(:)==r3(:))==9)

(sum(x(:)==s3(:))==9)

(sum(x(:)==w3(:))==9)

(sum(x(:)==z3(:))==9)

(sum(x(:)==q4

(sum(x(:)==r4

(sum(x(:)==s4

(sum(x(:)==w4

(sum(x(:)==z4

:)==tl(:))==9)|(sum(x(:)==t2(:))==9);

%=
% End of file 'bifurcLookUpFun.m.i

=%

72

function [PLCluster, Clusterization, resolutionTouoh, cornerTouch]=...
breakPL(PL)

%
% [PLCluster, Clusterization, resolutionTouch, cornerTouch] =...
% breakPL(PL)
%
% Description: Breaks the set of primitive line segments into
% geografically unrelated clusters.
%
% PL column: [theta d base LimitI LimitJ]'

%======= =========== ===%

% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %
%=== ==============%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'breakPL.m'

n=size(PL,2);
resSeparationSquared = 8; % 2"2 + 1A2 % =(2*sqrt(2))A2
resSeparation = sqrt(resSeparationSquared) ;

zerosnn=uint8(zeros(n,n));

Len=lengthOfPL(PL);
% GeoMedLenMatrix=sqrt((Len'*ones(l,n)) .* (ones(n,1)*Len));

% angleRelated=zerosnn;
perpRelated=zerosnn;
HALFANGLEMAXl=pi/8;
ComparisonAnglel=pi/4-HALFANGLEMAXl;
HALFANGLEMAX2=45*pi/(2*180); % 15 degrees / 2
ComparisonAngle2=pi/2-HALFANGLEMAX2;
% HALFANGLEMAX3=15*pi/(2*180); % 15 degrees / 2
% ComparisonAngle3=pi/2-HALFANGLEMAX3;

thetas=PL(l, :) ,-
%DeltaThetaMatrix = thetas'*ones(l,n)-ones(n,1)*thetas;
%angleRelated(find(abs(mod(DeltaThetaMatrix,pi/2)-pi/4)>ComparisonAnglel))=1;
%angleRelated(find(eye(n)))=0; % exclude self
%perpRelated(find(abs(mod(DeltaThetaMatrix-pi/2,pi)-pi/2)>ComparisonAngle2))=1;

% To save memory, do it line-by-line:
for i=l:n,

DeltaThetaMatrix = thetas-thetas(i);
perpRelated(i,find(abs(mod(DeltaThetaMatrix-pi/2,pi)-

pi/2)>ComparisonAngle2))=1;
end
clear DeltaThetaMatrix

73

[DummyDmin, DummyBestPair, dll] = . . .
distBetweenPoints(PL([5 7],:),PL([5 7],:)),■

dll(find(eye(n)))=Inf;
% touchesll = find (dll <= GeoMedLenMatrix);
resTouchesll = find(dll <= resSeparationSquared);
dll(find(~perpRelated))=Inf;
[minDistToAngleRelatedByColumn,RowIndexesWhereFound]=min(dll);

ColumnsWhereFound=find (minDistToAngleRelatedByColumn <
Len(RowindexesWhereFound).*Len);

resll=zerosnn;
resll(resTouchesll)=1;

cornerTouchll= [] ;
for c=l:length(ColumnsWhereFound),

% test if both vertices are "alone", that is, not touching other PL
if (sum(resll(:,ColumnsWhereFound(c)))==0)&...

(sum(resll(RowIndexesWhereFound(ColumnsWhereFound(c)),:))==0)
% if it is, then iclude it into cornerTouch class
cornerTouchll = [cornerTouchll...

sub2ind([n

n],RowIndexesWhereFound(ColumnsWhereFound(c)),ColumnsWhereFound(c))'];
end

end

clear resll dll

[DummyDmin, DummyBestPair, dl2] = ...
distBetweenPoints(PL([5 7],:),PL([6 8],:));

% touchesl2 = find(dl2 <= GeoMedLenMatrix);
resTouchesl2 = find(dl2 <= resSeparationSquared);
dl2(find(~perpRelated))=Inf;
[minDistToAngleRelatedByColumn,RowIndexesWhereFound] =min(dl2) ,-
%minDistToAngleRelatedByColumn(124)
%RowIndexesWhereFound(124)
%Len(RowIndexesWhereFound(124))*Len(124)

ColumnsWhereFound=find(minDistToAngleRelatedByColumn <
Len (RowIndexesWhereFound) . *Len) ,-

resl2=zerosnn;
resl2(resTouchesl2)=l; .

cornerTouchl2=[];
for c=l:length(ColumnsWhereFound),

% test if both vertices are "alone", that is, not touching other PL
if (sum(resl2(:,ColumnsWhereFound(c)))==0)&...

(sum(resl2(RowIndexesWhereFound(ColumnsWhereFound(c)),:))==0)
% if it is, then iclude it into cornerTouch class
cornerTouchl2 = [cornerTouchl2...

sub2ind([n
n],RowIndexesWhereFound(ColumnsWhereFound(c)),ColumnsWhereFound(c))'];

end
end

clear resl2 dl2

[DummyDmin, DummyBestPair, d21] = ...
distBetweenPoints(PL([6 8],:),PL([5 7],:));

74

% touches21 = find(d21 <= GeoMedLenMatrix);
resTouches21 = find(d21 <= resSeparationSquared);
d21(find(~perpRelated))=Inf;

[minDistToAngleRelatedByColuirm,RowIndexesWhereFound]=min(d21);

ColumnsWhereFound=find(minDistToAngleRelatedByColumn <
Len(RowIndexesWhereFound).*Len);

res21=zerosnn;
res21(resTouches21)=l;

cornerTouch21=[];
for c=l:length(ColumnsWhereFound),

% test if both vertices are "alone", that is, not touching other PL
if (sum(res21(:,ColumnsWhereFound(c)))==0)&...

(sum(res21(RowIndexesWhereFound(ColumnsWhereFound(c)),:))==0)
% if it is, then iclude it into cornerTouch class
cornerTouch21 = [cornerTouch21...

sub2ind([n
n] ,RowIndexesWhereFound(ColumnsWhereFound(c)),ColumnsWhereFound(c)) '] ;

end
end

clear res21 d21

[DummyDmin, DummyBestPair, d22] = ...
distBetweenPoints(PL([6 8],:),PL([6 8],:));

% touches22 = find(d22 <= GeoMedLenMatrix);
resTouches22 = find(d22 <= resSeparationSquared);
d22(find(-perpRelated))=Inf;

[minDistToAngleRelatedByColumn,RowIndexesWhereFound]=min(d22);

ColumnsWhereFound=find(minDistToAngleRelatedByColumn <
Len(RowIndexesWhereFound).*Len);

res22=zerosnn;
res22(resTouches22)=1;

cornerTouch22=[];
for c=l:length(ColumnsWhereFound),

% test if both vertices are "alone", that is, not touching other PL
if (sum(res22(:,ColumnsWhereFound(c)))==0)&...

(sum(res22(RowIndexesWhereFound(ColumnsWhereFound(c)),:))==0)
% if it is, then iclude it into cornerTouch class
cornerTouch22 = [comerTouch22 . . .

sub2ind([n
n]»RowIndexesWhereFound(ColumnsWhereFound(c)),ColumnsWhereFound(c)) '] ;

end
end

clear res22 d22

cornerTouch =
union(union(cornerTouchll,cornerTouchl2),union(comerTouch21,cornerTouch22));
cornerRelated=zerosnn ,-
cornerRelated(cornerTouch)=1;

resll=zerosnn;

75

resl2=zerosnn;
res21=zerosnn;
res22=zerosnn;
resll(resTouchesll)=1;
resl2(resTouchesl2)=1;
res21(resTouches21)=1;
res22(resTouches22)=1;
resolutionTouch = resll|resl2|res21|res22;
clear resll resl2 res21 res22

D=(resolutionTouch)|(cornerRelated); % (obtuseRelated & resolutionTouch); %

p=etree(double(D));
ElimVector=p;

k=0;
PLCluster={};
Clusterization={};
Cluster=zeros(size(p));

i=l; j=l;
for i=l:n,

if p(i)-=0,
k=k+l;
PLCluster{k}=PL(:,i);
Clusterization{k}=[i];
% Cluster(i)=k;
j = i;
while p(j)>0,

PLCluster{k}=[PLCluster{k} PL(:,p(j))];
Clusterization{k}=[Clusterization{k} p(j)];
Cluster(j)=k,•
j01d=j;
J=P(J);
p(jOld)=0;

end
% if p(j) clusterized before, merge the two clusters:
if Cluster(j)>0

% exclude common before merging
currentCount=length(Clusterization{k});
PLCluster{k}=PLCluster{k}(:,1:currentCount-1);
Clusterization{k}=Clusterization{k}(1:currentCount-l);

PLCluster{Cluster(j)}=[PLCluster{Cluster(j)} PLCluster{k}]
PLCluster=PLCluster(l:k-l);
Clusterization{Cluster(j)}=...

[Clusterization{Cluster(j)} Clusterization{k}];
Cluster (Clusterization{k}) =Cluster (j) ,-
Clusterization=Clusterization(l:k-l);
k=k-l; % backup cluster counter

else
Cluster(j)=k;

end
end

end

% End of file 'breakPL.m'
=====%

76

function [MergedPL, Colinearlndexes, newMergedLines, ...
NuniberOf Clusters] = colinear(PL, A, cosColinearLimit, SXNMAX)

%
% Description: Fuses colinar primitive segment lines that
% are close to each other.

%===%
% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'colinear.m'

n=size(PL,2);

% limit value of differencial angle to be considered colinear:
% global cosColinearLimit

% limit value of vertex distance to be considered touching:
global limitDist;

thetas=PL(l,:);
cosDiffThetaInBetweenPL=...

abs(triu((cos(triu(thetas'*ones(1,size(PL,2))...
-ones(size(PL,2),1)*thetas,1))),1));

distanceParameters=PL(2, :) ;
diffProjToCenter= abs(triu(distanceParameters'*ones(1,size(PL,2))...

-ones(size(PL,2),1)*distanceParameters));

MergedPL=PL;
newMergedLines=[];

% detect pairs of primitive lines that are approximately paralel
PairsOfParalelPL=find(cosDiffThetaInBetweenPL > cosColinearLimit);
disp([int2str(length(Pairs0fParalelPL)) '/' int2str((n*n -n)/2)...

' (' num2str(round(1000*length(PairsOfParalelPL)/((n*n -n)12))/10)...
'%) pairs of paralel primitive lines found.']);

ColinearTouchingPairs=[];
if length(PairsOfParalelPL)>0

PossiblePairs = PairsOfParalelPL(find(diffProjToCenter(PairsOfParalelPL) <
10));

disp([int2str(length(PossiblePairs)) '/'
int2str(length(PairsOfParalelPL))...

' ('
num2str(round(1000*length(PossiblePairs)/(length(PairsOfParalelPL)))/10)...

'%) pairs of possible primitive lines found.']);

77

% PairsOfParalelPL = PossiblePairs; % these are paralel and not too far
(perp.)

if length(PossiblePairs)>0
[ColinearTouchingPairs,ColinearButNotNecessarilyTouchingPairs]...

=findTouchingPairs(A, PL, PossiblePairs, n, limitDist, SINMAX);
%

ColinearTouchingPairs=intersect(PairsOfParalelPL,favorablyClosePairs(PL,limitDi
St));

disp([int2str(length(ColinearTouchingPairs)) '/'
int2str(length(PossiblePairs))...

' ('
num2str(round(1000*length(ColinearTouchingPairs)/(length(PossiblePairs)))/10)..

'%) pairs of touching primitive lines found.']);
end

end

ColinearIndexes=[];
if length(ColinearTouchingPairs)>0

[LI, L2] = ind2sub([n n].ColinearTouchingPairs);
selectedLines=zeros (l,n) ,-
selectedLines(LI)=1;
selectedLines (L2) =1 ,•
ColinearIndexes=find(selectedLines);

% cluster colinear pairs that touch each other
S=clusterColinearTouchingPairs(ColinearTouchingPairs,n);
NumberOfClusters=length(S) ;
disp(['Num of Clusters Found: ' int2str (NumberOfClusters)]) ,-

unchangedList=ones(l,n);
for i=l:NumberOfClusters,

% disp(['Cluster #' int2str(i) ' = [' int2str(S{i}) ']'])
[LI, L2] = ind2sub([n n],S{i});

selectedLines=zeros(1,n);
selectedLines (LI) =1 ,-
selectedLines(L2)=1;
indexesOfLinesToBeMerged=find(selectedLines);
ResultingLine=mergePrimitiveLines(PL(:,indexesOfLinesToBeMerged));
sizeOfThisCluster=length(indexesOfLinesToBeMerged);
thetaCluster = PL (1, indexesOfLinesToBeMerged) ,-

% only merge PL's if this cluster is fully connected
% in the ColinearButNotNecessarilyTouchingPairs set
AllConnections=[];
for cl=l:length(LI),

for c2=l:length(L2),
if Ll(cl) < L2(c2)

AllConnections=[AllConnections sub2ind([n n],LI(cl),L2(c2))];
end

end
end

unchangedList(indexesOfLinesToBeMerged)=0;
newMergedLines= [newMergedLines ResultingLine] ,-

end
disp([int2str(length(find(unchangedList))) ' PL remain unchanged.']);

78

disp([int2str(size(newMergedLines,2)) ' merged PL replaced the clusters.']);

MergedPL=[PL(:,find(unchangedList)) newMergedLines];
else

NumberOfClusters=0;
end % if length(ColinearTouchingPairs)>0

% %
function b=LineInCoinmon(s,t,n)
%
[LI, L2] = ind2sub([n n],[s t]) ;
b=(Ll(l)==Ll(2))|<L1(1)==L2(2))|(LI(2)==L2(1))|<L2(1)==L2(2));

% _ %
function ResultingPL=mergePrimitiveLines(PL)
%
% pixel MSE version based on function 'bestline'
%
n=size(PL,2);
if isempty(PL)

ResultingPL=PL;
else

theta=PL(l,l) ;
d=PL(2,l);
base=PL(3:4,l) ;
Center = base' + d*[cos(theta) sin(theta)];
r=uint8(zeros(round(2*Center) + 1));

for k=l:size(PL,2) ,
theta=PL(l,k) ;
d=PL(2,k);
maxl=ceil(max(max(PL(5:6, :))))
maxJ=ceil(max(max(PL(7:8, :))))
LineLength=lengthOfPL(PL(:,k))
for len=0:0.2:LineLength,
pointNow=round([PL(5,k) PL(7,k)] + len*[-sin(theta) cos(theta)]);

if (pointNow(l)<=maxI)&(pointNow(2)<=maxJ)&(l<=min(pointNow))
r(pointNow(l),pointNow(2))=1;

end
end

end
ResultingPL = bestline(r,Center);
% =[theta d based) base(2) Limitl(l) Limitl(2) LimitJ(l) LimitJ(2)]';

end

% %
function S=margeClustersHarked(OldCluster,clustersToMerge);
% merge clusters marked:
% Eg.: From {S{1} S{2} S{3} S{4} S{5} S{6} S{7}}, marked [2 4 5]:
% ==> S{1} S{3) S{6} S{7} SNew,
% SNew = S{2} U S{4} U S{5}
S={};
i=l;
mergedCluster=[] ;
for j=l:length(01dCluster) ,

if isempty(find(clustersToMerge==j))
S{i}=01dCluster{j}; •
i=i+l;

else
mergedCluster=[mergedCluster 01dCluster{j}];

79

end
end
if ~isempty(mergedCluster)

S{i}=sort(mergedCluster);
end

%.-___%

function S=clusterColinearTouchingPairs(ColinearTouchingPairs,n)
% cluster colinear pairs that touch each other

S{l}=ColinearTouchingPairs(l); % clusters: S{1}, S{2}, ...
for k=2:length(ColinearTouchingPairs),

included=0;
clustersToMerge=[];
i=l;

while i<=length(S), % test if pertain to any cluster
j=l;
touchingInThisCluster=0;
while j<=length(S{i})¬(touchingInThisCluster),

if LineInCommon(ColinearTouchingPairs(k),S{i}(j),n)
touchingInThisCluster=l;
% mark to merge the clusters
clustersToMerge = [clustersToMerge i];
if not(included) %

S{i} = [S{i} ColinearTouchingPairs (k)] ,-
included=l;

end
end % if Touching(ColinearTouchingPairs(k),S{i}(j))

j=j+l;
end % while j<=length(S{i})¬(touchinglnThisCluster)
i=i+l;

end % i<=length(S)

if not(included)
S{length(S)+l}=ColinearTouchingPairs(k);

else

S=mergeClustersMarked(S,clustersToMerge);
end % not(included)

end % for k=2:length(ColinearTouchingPairs)

% %

function [TouchxngPairs, ColinearButNotNecessarilyTouchingPairs]...
=findTouchingPairs(A, PL, PairsOfParalelPL, n, limitDist, SINMAX)

%

% find pairs of aligned PL that are enough close to each other
% by ONE of their extremities

limitDist2=limitDist*limitDist;
TouchingPairs=[];
ColinearButNotNecessarilyTouchingPairs=[];

[P, Q, LostPL] = pixelPL(PL,size(A));

for k=l:length(PairsOfParalelPL),

% find lines LI, L2

80

[LI, L2] = ind2sub([n n],PairsOfParalelPL(k));

if ((Ll==35) & (L2==40))
flag=l;

else
flag=0;

end

% compute the pixels hit by the endpoints of LI and L2
[iPl, jPl] = integerEndPoints(PL, LI, size(A));
[iP2, jP2] = integerEndPoints(PL, L2, size(A));

% dij = distance(LlPi, L2Pj)
dll=sqrt((PL(5,Ll)-PL(5,L2))*(PL{5,Ll)-PL(5,L2)) + (PL(7,L1)-

PL(7,L2))*(PL(7,L1)-PL(7,L2)));
d22=sqrt((PL(6,Ll)-PL(6,L2))*(PL(6,Ll)-PL(6,L2)) + (PL(8,L1)-

PL(8/L2))*(PL(8,L1)-PL(8,L2)));
dl2=sgrt((PL(5,Ll)-PL(6,L2))*(PL(5,Ll)-PL(6,L2)) + (PL(7,L1)-

PL(8,L2))*(PL(7,L1)-PL(8,L2)));
d21=sqrt((PL(6,Ll)-PL(5,L2))*(PL(6,Ll)-PL(5,L2)) + (PL(8,L1)-

PL(7,L2))*(PL(8,L1)-PL(7,L2>));
[dSort,sIndex]=sort([dll dl2 d22 d21]),-
mind=dSort(1);
% min=d(i,i) => d(j,j) should be max;
% min=d(i,j) => d(j,i) should be max, i,j in {1,2}
otherIndex=mod((slndex(l)-1)+2,4)+l;

% compute which endpoint of LI and L2 are the ones "touching" each other
Llg = floor((sIndex(l)-l)/2) + 1;
L2g = 1 + ((slndex(l)==2)|(slndex(l)==3));

% find all other PL that have an endpoint in their neighborhood
PLinNeighborhood = union(neighborPL(iPl(Llg), jPl(Llg), P, R),...

neighborPL(iP2(L2g), jP2(L2g), P, R)) ;
OtherPLinNeighborhood = setdiff(PLinNeighborhood, [LI L2]);

% only proceed with search if both conditions are met
if (slndex(4)==otherIndex)&isempty(OtherPLinNeighborhood)

% disp(num2str(100*k/length(PairsOfParalelPL)));

% posOK=' Good position ';

% hij = perpendicular distance(Lj'Pi, Lj)
hll = sigdistoline(PL([5 7],L2)',PL(:,L1)); % dist from L1P2 to LI
h22 = sigdistoline(PL([6 8],L1)',PL(:,L2)); % dist from L1P2 to L2
hl2 = sigdistoline(PL([5 7],L1)',PL(:,L2)); % dist from L1P1 to L2
h21 = sigdistoline(PL([6 8],L2)',PL(:,L1)); % dist from L2P2 to LI

Lenl=lengthOfPL(PL(:,LI));
Len2=length0fPL(PL(:,L2));

LlwithinL2=((hl2*h22 <= 0)|((max(abs([hll h22])) < limitDist)))&...
%(Len2 > Lenl)))&...

((max(abs([hl2/dll h22/d21])) < SINMAX)|...
(max(abs([hl2/dl2 h22/d22])) < SINMAX));

L2withinLl=((hll*h21 <= 0)|((max(abs([hll h21])) < limitDist)))&...
%(Lenl > Len2)))&...

((max(abs([hll/dll h21/dl2])) < SINMAX)|...
(max(abs([hll/d21 h21/d22])) < SINMAX));

81

if LlwithinL2|L2withinLl
ColinearButNotNecessarilyTouchingPairs...

=[ColinearButNotNecessarilyTouchingPairs PairsOfParalelPL(k)]
if mind < min([Lenl Len2])

TouchingPairs = [TouchingPairs PairsOfParalelPL(k)];
end % if (mind < min([Lenl Len2]))

end % if LlwithinL2|L2withinLl
else

% posOK=' Bad position ';
end % if (sIndex(4)==otherIndex)

end % for k=l:length(PairsOfParalelPL),

%-

function pairs = favorablyClosePairs(PL,limitDist)

n=size(PL,2);
limitDist2=limitDist*limitDist;
%
DeltallI=ones(n,l)*PL(5,:
DeltallJ=ones(n,l)*PL(7,:
Dll=DeltallI.*DeltallI + DeltallJ.»DeltallJ;
% rem: sqrt(Dll(k,k)) = 0

Delta22I=ones(n,l)*PL(6,:
Delta22J=ones(n,l)*PL(8,:
D22=Delta22I.*Delta22I +
% rem: sqrt(D12(k,k)) = 0

Deltal2I=ones(n,l)*PL(5,:
Deltal2J=ones(n,1)*PL(7,:

- PL(5,:)'*ones(l,n) ;
PL(7,:)'*ones(l,n);

Dll symetric

- PL(6,:)'*ones(l,n);
- PL(8,:)'*ones(l,n);

Delta22J.*Delta22J;
D22 symetric

- PL(6,:)'*ones(l,n);
- PL(8,:)'*ones(l,n);

D12=Deltal2I.*Deltal2I + Deltal2J.*Deltal2J;
% rem: sqrt(D12(k,k)) = ||L(k)|| D12 potentially not symetric

D=zeros(n,n,4) ,-
D(:,:,1)=D11;
D(:,:,2)=D12;
D(:,:,3)=D22;
D(:, :,4)=D12';
[minD/minIndex]=min(D, [],3) ;
[maxD,maxIndex]=max(D, [] , 3) ;

otherIndex=mod((minlndex-l)+2,4)+1;

pairs=intersect(find(minD<limitDist2),find((maxlndex-otherIndex)==0));

% %

% Debug functions

function debugShowCluster(S)
%
str='S = {' ;
for k=l:length(S),

str=[str ' [' int2str(S{k}) ']'];
end
disp([str ' }'])

% End of file 'colinear.m'
===%

82

function b=cornerLookUpFun(x)
%
% 14 7
% x 2 5 8
% 3 6 9
%
% Description: Computes lookup table for detection of corners
% in the edge image.
%

%=

% COMPUTER-AIDED RECOGNITION OF
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS
%
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe
%
% Department of Computer Science
% Naval Postgraduate School, September 1999
%
%===

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'cornerLookUpFun.m'

=%
%
%
%
%
%
%
%
%
%

=%

%-

b=(sum(x(:
0]')==9) | .

(sum(x (:
0]')==9) |.

(sum(x(:
0]')==9) |.

(sum(x(:
1] ')==9);

==[0 0 0 110 0 1 0]')==9)|(sum(x(:)==[0 10 110 0 0

==[0 10 0 11 0 0 0]')==9)|(sum(x(:)==[0 0 0 0 11 0 1

==[1 0 0 0 10 10 0]')==9)|(sum(x(:)==[l 0 1 0 10 0 0

==[0 0 1 0 10 0 0 1]')==9)|(sum(x(:)==[0 0 0 0 10 10

% End of file 'cornerLookUpFun.m'

83

function createCornerLooktJp
%
% Description: Creates in memory lookup tables for
% detection of special points in edge image.

% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% . %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'createCornerLookUp.m'

% %

global CornerLookUpTable BifurcLookUpTable FillStraightGapsLookUpTable

CornerLookUpTable=makelut('cornerLookUpFun',3);

BifurcLookUpTable=makelut('bifurcLookUpFun',3);

FillStraightGapsLookUpTable=makelut('fillStraightLookUpFun',3);

% End of file 'createCornerLookUp.m'

84

function [drain, bestPair, d] = distBetweenPoints(PA,PB)
%
% PA (2 x m) and PB (2 x n) are arrays of points.
%
% Description: Computes the distance between points of two sets
% of points A & B. For every point Ai in A end Bj in
% B, a distance d(ij) will be computed, dmin is the
% minimum of these distances, obtained at the best
% pair (i, j) .
%

%===%
% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %
%===%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'distBetweenPoints.m'

% %

m=size(PA,2);
n=size(PB,2);
d=zeros(m,n);
d=inf;

DI=PA(1,:)'*ones(l,n)-ones(m,l)*PB(l,:);
DJ=PA(2,:)'*ones(l,n)-ones(m,l)*PB(2,:);
% d=sqrt(DI.*DI + DJ.*DJ);
d = DI.*DI + DJ.*DJ;

[dClusterAtoEachB, Indexes] = min(d);
[dmin, Jmin] = min(dClusterAtoEachB);
dmin=sqrt(dmin);
Imin = Indexes(Jmin);
bestPair=[Imin Jmin];

%===%
% End of file 'distBetweenPoints.m'

85

%

function [E, CB, sei] = edgedetec(A)
%
% Description: enhanced edge detection & edge split points
%

%
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science • %
% Naval Postgraduate School, September 1999 %
%_ __ _ %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'edgedetec.m'

global CornerLookUpTable BifurcLookUpTable FillStraightGapsLookUpTable

MainContourAnalysis=0;

if MainContourAnalysis
[Contour, sei, threshold] = maincontours (A) ,-

for k=l:length(threshold),
% E=edge(A,'canny');

Aux=zeros(size(A));
Aux(find(A>=threshold(k)))=1;

E{k}=edge(Aux,'canny');

% E=E|applylut(E,FillStraightGapsLookUpTable);
E{k}=bwmorph(E{k}, 'clean') ,-

Corners=applylut(E{k},CornerLookUpTable);
Bifurcs=applylut(E{k},BifurcLookUpTable);
CB{k}=Corners|Bifurcs;

end
else

[E,th]=edge(A,'canny');
E=edge(A,'canny',[th(l) max([th(l) th(2)/2])]);
E=bwmorph(E,'clean');
Corners=applylut(E,CornerLookUpTable);
Bifurcs=applylut(E,BifurcLookUpTable);
CB=Corners|Bifurcs;
E={E};
CB={CB};
sel=l;

end

% End of file 'edgedetec.m'

86

function b=fillStraightLookUpFun(x)
% 14 7
% x 2 5 8
% 3 6 9
%
% Description: Computes lookup table for finding special points
% in the edge image.

% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %
%==- ================%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'fillStraightLookUpFun.m'

% %

pl=[0 0 0; 1 0 1; 0 0 0];
p2=rot90(pl);

gl=[l 0 0; 0 0 0; 0 0 1];
q2=rot90(ql);

b=(sum(x(:)==pl(:))==9)|(sum(x(:)==p2(:))==9)|...
(sum(x(:)==ql(:))==9)|(sum(x<:)==q2(:))==9);

% End of file 'fillStraightLookUpFun.m'

87

function IP, Indexes] = fPartition(S)
%
% function [P, Indexes] = fPartition(S)
%
% S={S(i)}
%

% Description: Eliminates sets S(i) in the partion S,
% if there is some S(j) contained in S(i)

% =======================%

% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% . %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 % I %
% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'fPartition.m'

%-

n=length(S);
EmptyList=uint8(zeros(l,n));
DiscardMark=uint8(zeros(l,n));
SearchList=uint8(ones(l,n));
for k=l:n,

if isempty(S{k})
SearchList(k)=0;
EmptyList(k)=l;

end
end

i=l;
while i < n,

if -EmptyList(i)
j = 1;
while j <= n,
if SearchList(j)&(i~=j)

if prod(ismember(S{i},S{j}))==1
DiscardMark(j)=1;
SearchList(i)=0;

end
end

3 = j + 1;
end

end
i = i + 1;

end;
Indexes = find(-DiscardMark);
P = S(Indexes);

% End of file 'fPartition.m'

88

function similar = fuzzyeq(LineDescription, TotalLineDescription)
%
% Use:
%
% similar = fuzzyeq(LineDescription,TotalLineDescription)
%
% where
%
% LineDescription = [angle, disp, basel, baseJ,...
% LimitII, LimitI2, LimitJl, LimitJ2]
%
% Description: Checks if there is a similar line segment in
% 'TotalLineDescription' to 'LineDescription'

% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'fuzzyeq.m'

global limitDist
angle=LineDescription(l);
disp=LineDescription(2);
base=LineDescription(3:4)';
LimitI=LineDescription(5:6)';
LimitJ=LineDescription(7:8)';

similar=0 ;
% k=size(TotalLineDescription, 2) ;
k=l;
while (k <= size(TotalLineDescription,2)) ¬(similar),

a=TotalLineDescription(l,k);
d=TotalLineDescription(2,k);
b=TotalLineDescription(3:4,k)';
LI=TotalLineDescription(5:6,k)';
LJ=TotalLineDescription(7:8,k)';
Dl=sqrt((LI(l)-LimitI(l))*(LI(l)-LimitI(l)) + (LJ(1)-LimitJ(l))*(LJ(1) ■

LimitJ(l)));
D2=sqrt((LI(2)-LimitI(2))*(LI(2)-LimitI(2)) + (LJ(2)-LimitJ(2))*(LJ(2) •

LimitJ(2)));
similar = (max([Dl D2]) < limitDist);
k=k+l;

end

% End of file 'fuzzyeq.m'

89

function G = graphPL(PL, P, IJ, sizeA)
%
% G = graphPL(PL, P, IJ, sizeA)
%

% Description: Computes the endpoint connectivity graph.

0 %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% . %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C Rowe %

1 % % Department of Computer Science %
% Naval Postgraduate School, September 1999 %

%==
%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%

% This file named: 'graphPL.m'

% %

n=size(PL,2);

G=uint8(zeros(2*n, 2*n));

R = 2;
radiusSquared = (R + 0.5)*(R + 0.5);
neighborhoodMask = uint8(zeros(2*R+1,2*R+1,size(P, 3)));
for i=-R:l:R,

for j=-R:l:R,
if (i*i + j*j) <= radiusSquared

neighborhoodMask(i+R+1,j +R+I,:)=1;
end

end
end

% connect the endpoints of the same line-segment
for k=l:n,

PI = 2*(k-l) + 1;
P2 = 2*(k-l) + 2;
G(P1, P2) = 1;
G(P2, PI) = 1;

end

% connect the neighbor endpoint s
for k=l:n,

[iP, jP] = integerEndPoints(PL, k , sizeA);

for g=l:2,
i = iP(g); j = jP(g);

NeighborhoodlRange = [max([l i-R]):min([i+R sizeA(l)])];
NeighborhoodJRange = [max([l j-R]):min([j+R sizeA(2)])];

onBorders = (i < R+l) | (j < R+l)|(i+R > sizeA(l)) | (j+R > sizeA(2));

90

Neighborhood? = P(NeighborhoodlRange,NeighborhoodJRange,:);

if onBorders
% raw squared neighborhood
[I, J, H] = ind2sub([length(NeighborhoodlRange)

length(NeighborhoodJRange)],...
find(NeighborhoodP(:,:,:)));

else
% refined circular neighborhood
[I, J, H] = ind2sub([length(NeighborhoodlRange)

length(NeighborhoodJRange)] , . . .
find(NeighborhoodP(:,:,:)&neighborhoodMask));

end

for t=l:length(I), % test all vertices found inside Neighborhood
endPointNUmber = NeighborhoodP(I(t), J(t), H(t));
if G(2*(k-l)+g, endPointNUmber)==0

G(2*(k-l)+g, endPointNUmber)=2;
end

end
G(2*(k-l)+g, 2*(k-l)+g)=0;

end
end

zerosnn=uint8(zeros(n,n)) ;
Len=lengthOfPL(PL) ;
perpRelated=zerosnn;
paraRelated=zerosnn;
% transvRelated=uint8(zeros(2*n,2*n));
HALFANGLEMAXl=20*pi/(2*180) ; % 15 degrees / 2
ComparisonAnglel=pi/2-HALFANGLEMAXl;
HALFANGLEMAX2=45*pi/(2*180) ; % 15 degrees / 2
ComparisonAngle2=pi/2-HALFANGLEMAX2;
ComparisonAngle3=pi/4-HALFANGLEMAX1;
thetas=PL(l,:);
% To save memory, do it line-by-line:
for i=l:n,

DeltaThetaMatrix = thetas-thetas(i);
perpRelated(i,find(abs(mod(DeltaThetaMatrix-pi/2, pi) - pi/2) >

ComparisonAngle2))=1;
paraRelated(i,find(abs(mod(DeltaThetaMatrix, pi) - pi/2) >

ComparisonAnglel))=1;
end
clear DeltaThetaMatrix

for kl=l:n,
% kl
for k2=kl+l:n,

%if (kl==) & (k2==)
% [kl k2]
%end

k = [kl k2];

% connect the closer endpoints of perpendicular line-segments
if perpRelated(kl, k2)

[dmin, bestPair, d] = ...
distBetweenPoints([PL([5 7], kl) PL([6 8], kl)],[PL([5 7], k2)

PL([6 8], k2)]);

91

pause

if dmin < sqrt(prod(Lent[kl k2])))
pi = 2*(kl-l) + bestPair(1);
p2 = 2*(k2-l) + bestPair(2);
if isempty(find(G(pl,:)==2)) | isempty(find(G(p2,:)==2))

% plotwithlines(zeros(sizeA),{PL(:,[kl k2])}, 2, {[0 10]}),-

G(pl, p2) = 3;
G(p2, pi) = 3;
end

end
end

% connect the closer endpoints of aligned parallel line-segments
if paraRelated(kl, k2)

[lenMin, whoLenMin] = min(Len([kl k2]));
[lenMax, whoLenMax] = max(Len([kl k2]));

[dmin, bestPair, dSquared] = ...
distBetweenPoints([PL([5 7], kl) PL([6 8], kl)],[PL([5 7], k2)

PL([6 8], k2)]) ;

oppositePair = 3 - bestPair;

if (dmin < lenMin)&(dSquared(oppositePair(1) .oppositePair(2)) <
lenMin*lenMin)

pi = 2*(kl-l) + bestPair (1) ,•
p2 = 2*(k2-l) + bestPair(2) ;
if isempty(find(G(pi,:)==2)) | isempty(find(G(p2,:)==2))

PLAux = PLfromPoints(IJ(pl,:), IJ(p2,:), sizeA);
if abs(mod(PL(l,k(whoLenMax))-PLAux(l),pi/2)-pi/4) >

ComparisonAngle3
% plotwithlines(zeros(sizeA) , {PL(:, [kl k2])}, 2, {[0 1 0]});

pause
G(pl, p2) = 5;

G(p2, pi) = 5;
end

end
pi = 2*(kl-l) + oppositePair(1) ;
p2 = 2*(k2-l) + oppositePair(2);

if isempty(find(G(pi,:)==2)) | isempty(find(G(p2,:)==2))
PLAux = PLfromPoints(IJ(pi,:), IJ(p2,:), sizeA);
if abs (mod(PL(l,k(whoLenMax))-PLAux(l),pi/2)-pi/4) >

ComparisonAngle3
% plotwithlines(zeros(sizeA),{PL(:,[kl k2])}, 2, {[0 1 0]});

pause
G(pl, p2) = 5;

G(p2, pi) = 5;
end

end
end

end

end
end

for kl=l:n,
%; kl
for k2=kl+l:n,

92

k = [kl k2];

% connect the endpoint if touching body of perpendicular line-segment
if perpRelated(kl, k2)

proj=zeros(2,2) ;

[h(l), projd,:)] = sigdistoline(IJ(2*(k2-l) +1,:), PL (: , kl));
[h(2), proj(2,:)]= sigdistoline(IJ(2*(k2-l) + 2,:), PL(:, kl));
[minh, gmin] = min(abs(h));
if (abs(h(gmin)) < 2*sgrt(2)) & (prod(h) >= 0) &...

(abs(distBetweenPoints(proj(gmin,:)',PL([5 7],kl))+...
distBetweenPoints(proj(gmin, :)' ,PL([6 8] ,kl))-Len(kl)) < 1)

ql = 2*(kl-l) + 1;
g2 = 2*(kl-l) + 2;
p = 2*(k2-l) + gmin;
% if (G(p, ql)==0)&(G(p, q2)==0)
if (sum(G(p, ql)==[0 3])==1)&(sum(G(p, q2)==[0 3])==1)

G(p, ql) = 4;
G(p, q2) = 4;
G(ql, p) = 4;
G(q2, p) = 4;

end
% plotwithlines(zeros(sizeA),{PL(:, [kl k2])}, 2, {[1 0 0]}); pause

end

[h(D, projd,:)] = sigdistoline (IJ(2*(kl-l) + 1,:), PL (: , k2));
[h(2), proj(2,:)] = sigdistoline(IJ(2*(kl-1) +2,:), PL(:, k2));
[minh, gmin] = min(abs(h)) ;
if (abs(h(gmin)) < 2*sqrt(2)) & (prod(h) >= 0) &...

(abs(distBetweenPoints(proj(gmin,:)' , PL([5 7] ,k2)) + ...
distBetweenPoints(proj(gmin,:)', PL([6 8],k2))-Len(k2)) < 1)

ql = 2*(k2-l) + 1;
q2 = 2*(k2-l) + 2;
p = 2*(kl-1) + gmin;
if (sum(G(p, ql)==[0 3])==l)&(sum(G(p, q2)==[0 3])==1)

G(p, ql) = 4;
G(p, q2) = 4;
G(ql, p) = 4;
G(q2, p) = 4;

%cancelLinks = find(G(p,:)==3);
%G(p,cancelLinks)=0;
%G (cancelLinks, p) =0 ,-

end
% plotwithlines(zeros(sizeA),{PL(:, [kl k2])}, 2, {[1 0 0]}); pause

end
end

end
end
clear perpRelated paraRelated

% End of file 'graphPL.m'

93

function [ISeq, JSeq, totalPerimeter, supportedFraction]...
= IJSeqFromPathdoopPath, IJCoordinates, PL, G, sizeA)

%
% [ISeq, JSeq] = IJSeqFromPathdoopPath, IJCoordinates, G, sizeA)
%
% Description: Computes the polygon determined by a cycle in G.

%===%

% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %

% %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'IJSeqFromPath.m'

c = loopPath([1 2]);

for k=3:length(loopPath) ,
p2 = loopPath(k);
pi = 2*floor((p2-l)/2) + 2 - mod(p2-l, 2);
c = [c pi p2];

end
c = [c loopPath([1 2])] ;

% Len = lengthOfPL(PL);

ISeq = IJCoordinates(c(1:2),1)';
JSeq = IJCoordinates(c(1:2),2)';
supportedPerimeter = distBetweenPoints([ISeq(l) JSeq(l)]', [ISeq(2) JSeq(2)]');
totalPerimeter = supportedPerimeter;

k=3;
while k <= length(c)-l,

% p = 2*floor((p2-l)/2) + 2 - mod(p2-l, 2);
gJump = double (G(c (k-1) ,c(k))) ,-
switch gJump

case {1,2,5}
ISeq = [ISeq IJCoordinates(c(k),1)];
JSeq = [JSeq IJCoordinates(c(k),2)];
jumpLength = distBetweenPoints(IJCoordinates(c(k-1),:)',

IJCoordinates(c(k),:)');
totalPerimeter = totalPerimeter + jumpLength;
switch gJump

case 1
supportedPerimeter = supportedPerimeter + jumpLength;

case {2,5}
end

case 2222 % (perimeter computation is approximated)

94

PLl=PLfromPoints(IJCoordinates(c(k-2),:) ,IJCoordinates(c(k-
1),:),sizeA);

PL2=PLfromPoints(IJCoordinates(c(k),:),IJCoordinates(c(k+1),:),sizeA);
if abs(cos(mod(PLl(l)-PL2(2)-pi/2,pi))) > cos(pi/6)

intersectionPoint = ...
intersectLines(IJCoordinates([c(k-2) c(k-l)],:),...

IJCoordinates([c(k) c(k+l)],:));
ISeq(length(ISeq)) = intersectionPoint(1);
JSeq(length(JSeq)) = intersectionPoint(2);

else
ISeq = [ISeq IJCoordinates(c(k) , 1)];
JSeq = [JSeq IJCoordinates(c(k),2)];

end
jumpLength = distBetweenPoints(IJCoordinates(c(k-1),:)',

IJCoordinates(c(k), :) ') ;
totalPerimeter = totalPerimeter + jumpLength;

case 3
intersectionPoint = ...

intersectLines(IJCoordinates([c(k-2) c(k-1)],:),.. .
IJCoordinates([c(k) c(k+1)],:));

K = length(ISeq)+1;
previousJump = distBetweenPoints([ISeq(K-2) JSeq(K-2)]', [ISeq(K-l)

JSeq(K-1)]');
jumpLength = distBetweenPoints([ISeq(K-2) JSeq(K-2)]',

intersectionPoint');
totalPerimeter = totalPerimeter + jumpLength - previousJump;
if jumpLength < previousJump

supportedPerimeter = supportedPerimeter + jumpLength -
previousJump;

end

jumpAfterCorner = distBetweenPoints(IJCoordinates(c(k+1),:)',
intersectionPoint');

totalPerimeter = totalPerimeter + jumpAfterCorner;

supportedPerimeter = supportedPerimeter + ...
min([jumpAfterCorner,...

distBetweenPoints(IJCoordinates(c(k),:)',
IJCoordinates(c(k+1),:)')]);

ISeq(length(ISeq)) = intersectionPoint(1);
JSeq(length(JSeq)) = intersectionPoint(2);

if k < length(c)-l
% do nothing

else
firstJump = distBetweenPoints([ISeq(1) JSeq(l)]', [ISeq(2)

JSeq(2)]');
totalPerimeter = totalPerimeter - firstJump;
supportedPerimeter = supportedPerimeter - firstJump,-

ISeq = ISeq(2:length(ISeq));
JSeq = JSeq(2:length(JSeq));
ISeq = [ISeq ISeq(l)];
JSeq = [JSeq JSeq(l)];

end

case 4
intersectionPoint = ...

95

intersectLines(IJCoordinates([c(k-2) c(k-l)],:),...
IJCoordinates ([c(k) c(k+l)]•,:)) ;

K = length(ISeq)+1;

previousJump = distBetweenPoints([ISeq(K-2) JSeq(K-2)]', [ISeq(K-l)
JSeq(K-l)]');

jumpLength = distBetweenPoints([ISeq(K-2) JSeq(K-2)]',
intersectionPoint');

totalPerimeter = totalPerimeter + jumpLength - previousJump;

if jumpLength < previousJump
supportedPerimeter = supportedPerimeter + jumpLength -

previousJump;
end

jumpAfterCorner = distBetweenPoints(IJCoordinates(c(k+1),:)',
intersectionPoint');

totalPerimeter = totalPerimeter + jumpAfterCorner;

supportedPerimeter = supportedPerimeter + . ..
min([jumpAfterCorner,...

distBetweenPoints(IJCoordinates(c(k),:)',
IJCoordinates(c(k+1),:)')]);

ISeq(length(ISeq)) = intersectionPoint(1);
JSeqQength(JSeq)) = intersectionPoint(2);

if k < length(c)-l
ISeq = [ISeq IJCoordinates(c(k),1)];

JSeq = [JSeq IJCoordinates(c(k),2)];
else

firstJump = distBetweenPoints([ISeq(l) JSeq(l)]', [ISeq(2)
JSeq(2)]');

totalPerimeter = totalPerimeter - firstJump;
supportedPerimeter = supportedPerimeter - firstJump;
ISeq = ISeq(2:length(ISeq)) ;
JSeq = JSeq(2:length(JSeq)) ;
ISeq = [ISeq ISeq(l)];
JSeq = [JSeq JSeq(l)];

end
otherwise

dispC ')
end
k = k + 1;

end

supportedFraction = supportedPerimeter / totalPerimeter;

% %

function P = intersectLines(Ll, L2);
P1=L1(1,:); Q1=L1(2,:);
P2=L2(1, :); Q2=L2(2, :) ;
ul=Ql-Pl; u2=Q2-P2;
L = inv([ul' u2'])*(P2-P1)';
P = PI + L(l)*ul; % = P2 + L(2)*u2;

% End of file 'IJSeqFromPath.m'

96

function [CX, CY, V]=improfile2(A,JVSeq,IVSeq)
%
% Description: Find the sequence of pixels along a polygonal line,
% given by its vertices.

%===%
% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science • %
% Naval Postgraduate School, September 1999 %
% %
%===%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'improfile2.m'

[m,n]=size(A);
controlFrame=zeros(m,n);

CX=[];
CY=[];
V=[];
dist=zeros(1,3) ;
for k=l:length(JVSeq)-l,

P0=min(max(round([IVSeq(k) JVSeq(k)]-0.5), 1), [m n]);
Pl=min(max(round([IVSeq(k+l) JVSeq(k+l)]-0.5), 1),[m n]);
controlFrame(POd) ,P0(2))=1;
CY=[CY P0(1)];
CX=[CX P0 (2)] ;
V=[V A(P0(1),P0(2))];
PNow=Pl;
while sum(PNow==P0)-=2,

controlFrame(PNowd) ,PNow(2)) =1;
CY=[CY PNow(l)];
CX=[CX PNow(2)];
V=[V A(PNow(1),PNow(2))],
DI=sign(P0(l) - PNow(l))
DJ=sign(P0(2) - PNow(2))
Q=[(PNow+[DI DJ])' (PNow+[DI 0])' (PNow+[0 DJ])'];

% on the line, N = | | (j - jO) *(i - il) - (j - jl)*(i - 10) | | = 0
for q=l:3,

dist(q)=abs((Q(2,q)-P0(2))*(Q(l,q)-Pl(D) - (Q(2 , q)-PI (2)) * (Q(l, q) •
P0(1))) ; .

end
[dmin,indexToNewP]=min(dist);
PNow=Q(:,indexToNewP)';

end
end

% End of file 'improfile2.m'

97

function [iP, jp] = integerEndPoints(PL, k , sizeA)
%
% Description: Builds a table with the coordinates of the endpoints,
% rounded to the nearest integer.

% ============================%

% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% . %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
* %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'integerEndPoints.m'

iP = round(PL([5 6],k)');
jP = round(PL([7 8],k)');
iP = max(iP, [1 1])■
jP = max(jp, [1 1]);
iP = min(iP,sizeA(l)*[1 1]);
jP = min(jP,sizeA(2)*[l 1]);

% End of file 'integerEndPoints.m'

98

function c = lengthOfPL(PL)
%
% Description: computes the length of primitive line segments in 'PL'
%

% =: = = = =: = %

% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% • %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'lengthOfPL.m'

% %

DI = PL(5,:)-PL(6,:);
DJ = PL(7,:)-PL(8,:);
c = sgrt(DI.*DI + DJ.*DJ);

%==:=====%
% End of file 'lengthOfPL.m'

99

function booleanReturn = lineseg(Seg)
%
% Description: Defines criterion for acceptable edge segments.
%

* %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% . %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %

I %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
* %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'lineseg.m'

% %

% Edges should have at least three pixels.

booleanReturn = length(find(Seg))>=3;

% End of file 'lineseg.m'

100

function [loop, h] = loopfromPL(InitialPath, HMAX, IJCoordinates, A, PL);
%
% Usage:
%
% [loop, h] = loopfromPL(InitialPath, HMAX, IJCoordinates, A, PL);
%
% Description: Searches for a cycle in G containing 'IntialPath'.
%
% Global G is nxn binary matrix representing the edge
% connections in an oriented graph of N vertices.
% "p", one of the vertices; "H" max depth of search.
%
%
%
% P=P0

/ 1 \
Pll P12 P13
/ / 1 \
1 P22 P23 P24

/ 1
P31 P32=P0 {PO, P13, P23, PO}

cycle found!

=%

% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0

% This file named:

global G

debugOn = 0;

N = size(G,l);

'loopfromPL.m'

f = InitialPath(l);
p = InitialPath(length(InitialPath));

prohibited = InitialPath(2:length(InitialPath));

for k=l:N,
distance(k) = sum((IJCoordinates(k,:) - IJCoordinates(f,:)). ~2);

end

Found = 0;
Fail = 0;

101

counter = ones(1,HMAX);
cMax = zeros(1,HMAX);

h = 1;
nextSet = 1;
while (-Found)&(-Fail),

f = InitialPath(l),-
p = InitialPath(length(InitialPath));

pathSet = InitialPath(l:length(InitialPath)-l) ,-
prohibited = InitialPath(2:length(InitialPath)) ;
nextSet = 1;
h = 1;

% place to probe counter, if debugging

if debugOn

plotwithlines(A,{PL PL(:,floor((prohibited-1)12) +1) PL(:,floor((pathSet-
l)/2)+l) },[2 2 2],{[1 0 1] [1 0 0] [0 1 0]})

pause
end

f);

while (-isempty(nextSet)) & (h <= HMAX) & (-Found) & (-Fail),
[nextSet, pathSet, prohibited, Found] = nextTotp, pathSet, prohibited,

% debug only
cMax(h) = length(nextSet);

% distance from nextSet(k) to f
[dummySorted, slndex] = sort(distance(nextSet));
nextSet = nextSet(slndex);

if counter(h) > length(nextSet)
if h > 1

counter(h-1) = counter(h-1) + 1;
counter(h:HMAX)=1;
h = 1;
p = InitialPath(length(InitialPath));
pathSet = InitialPath (1: length (InitialPath)-1) ,-
prohibited = InitialPath(2:length(InitialPath));

else
Fail = 1;

end
else

if (-isempty(nextSet))&(h < HMAX)
p = nextSet (counter (h)) ,-

%
if debugOn

v=axis;
plotwithlines(A,{PL PL(:,floor((prohibited-1)/2)+1)...

PL(:,floor((pathSet-l)/2)+l) PL(:,floor((p-1)/2)+1)},.. .
[2 2 2 2],{[1 0 1][1 0 0][0 1 0][1 1 0]})

str=[];

for ih=l:h,
str=[str int2str(pathSet(1+ih)) ':(' int2str(counter(ih))...

'/' int2str(cMax(ih)) '), '];

102

end
str = [str '—>' int2str(p) ' options: '...

int2str(find(G(pathSet(l+h),:)>1)) ' types: '

int2str(double(G(pathSet(1+h),find(G(pathSet(1+h),:)>1))))];
title(str)
xlabel(int2str(pathSet))
axis(v)
pause

end
h = h + 1;

else
counter(h) = counter(h) + 1;
counter(h:HMAX)=1;

end
end

end
end

if Found
loop = pathSet;

else
loop = [] ;

end

% End of file 'loopfromPL.m'

103

function PLinNeighborhood = neighborPL(i, j, P, R)
%
% Usage:
% PLinNeighborhood = neighborPL(i, j , P, R)
%
% Description:
% Finds all the indexes of all primitive line-segments that
% have endpoints in the R-radius neighborhood of (i,j), by
% inspecting the endpoint lookup table 'P'.

%===%
% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %
%===%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'neighborPL.m'

sizeA = size(P) ;

PLinNeighborhood = [];

NeighborhoodlRange = [max([l i-R]):min([i+R sizeA(l)])];
NeighborhoodJRange = [max([l j-R]):min([j+R sizeA(2)])];

Neighborhood? = P(NeighborhoodlRange,NeighborhoodJRange,:);

[I, J, H] = ind2sub([length(NeighborhoodlRange) length(NeighborhoodJRange)]
find(NeighborhoodP(:,:,:)));

for t=l:length(I), % test all vertices found inside Neighborhood
endPointNUmber = Neighborhood?(I(t), J(t), H(t));
PLnumber = floor((endPointNUmber-1)/2)+1;
PLinNeighborhood = [PLinNeighborhood PLnumber];

end

PLinNeighborhood = unique(PLinNeighborhood);

% End of file 'neighborPL.m'

104

function [nextSet, pathSet, prohibited. Found] = nextTo(i, path, prohibited, f)
%
% Usage:
% [nextSet, pathSet, prohibited, Found]...
% = nextTo(i, path, prohibited, f)
%
% Description:
% Evaluates the next possibilities for path continuation
% from the current 'path', when searching for cycles.

%===%
% %
% COMPUTER-AIDED RECOGNITION OF • %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %
%===%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'nextTo.m'

global G
next = setdiff(find(G(i,:) > 1), prohibited);
prohibited = [prohibited next];

Found = ismember(f, next);%&isempty(intersect(next, setdiff(path,f)));
if Found

nextSet = f; % next;
pathSet = [path i];

else
if -isempty(next)

for k=l:length(next) ,
next(k) = find(G(next(k),:)==1);

end
next = setdiff(next, prohibited);
prohibited = [prohibited next];

end
if isempty(next)
nextSet = [];

pathSet = [];
Found = 0;
else

if length(next)==1
[nextSet, pathSet, prohibited, Found] = ...

nextTofnext, [path i], prohibited, f);
else

nextSet = next;
pathSet = [path i];

end
end

end

% End of file 'nextTo.m'

105

%
% Description:
%
% This script program:
% (i) Computes the (Cannys method)edge image from the input image.
% (ii) Detects some of the corners and junctions for enhanced
% line-segment extraction by morphological operations.
%

% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %

I ■ %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %

I %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4 0
%
% This file named: 'Phasel.m'

disp (' ==_===_========,j

disp(['Begining of edge extraction phase for image in: '" FileName ""])•
Tl=clock; [B, CB, sei] = edgedetec(A); T2=clock;
timeSpentExtractingEdges=etime(T2 , Tl) ;
disp(['Edge extraction completed: ET=' num2str(timeSpentExtractingEdges)]);

% Compute pixels in any main edge
BTotal=zeros(size(B{l}));
for k=l:length(sei),

BTotal=B{k}|BTotal;
end

% plot edges extracted from 'A'
if showContours

figlhandle=figure(l);
for k=l:length(sei),

EdgeOnlyImage=...
uint8(round(255*(1-double(BTotal))));

% imagesc(EdgeOnlylmage);
imwrite(EdgeOnlyImage,[FileName '.edgeOnly(' int2str(k)

'of int2str(length(sei)) ') . tif] , ' tif') ;

EdgeWithCornersImage=...
uint8(round(255*(21 - 16*double(CB{k>)-4*double(B{k})-

double(BTotal))/21));
imagesc(EdgeWithCornersImage);
imwrite(EdgeWithCornersImage,[FileName '.edgeWithCorners('...

int2str(k) 'of int2str(length(sei)) ') .tif'] , ' tif') ;
colormap(gray);
title(["" FileName '": Edge extraction ' int2str (k) . . .

' of ' int2str(length(sel))]);

106

axis image
axis on

if logResults
hgsave(figlhandle,[FileName '.edgeC int2str(k) 'of.

int2str(length(sei)) ').Fig']);
else

pause(1)
end

end
end

% End of file 'Phasel.m'

107

%
% Description: This script program extracts primitive lines from
% the edge image derived from original input image.
% Results are plot graphically.

% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% . %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %

% Programing Language: Matlab 5.3
% Operational'System: Windows NT 4.0
%
% This file named: 'Phasell.m'

% %

disp('==•)

disp(['Begining of primitive line search phase for image in: ''' FileName

fig2handle=figure(2);
Tl=clock; PL = prilines(A, B, CB, sei); T2=clock;
timeSpentExtractingPL=etime(T2,T1);

% plot primitive lines extracted from 'A'
elf
plotwithlines(A,{PL},1.5,{[0 0 1]});
title([int2str(size(PL,2)) ' primitives line segments found']);
xlabel([date ' ' int2str(T2(4)) ':' sprintf('%2.2d',T2(5))...

', ET=' num2str(round(10*etime(T2,Tl))/10) 's'])
disp(['End of primitive line search phase: ET=' num2str(etime(T2,Tl))]);

if logResults
hgsave(fig2handle,[FileName '.PL.Fig']);
save([FileName '.Phasen.mat']);

end

% End of file 'Phasell.m'

108

%
% Description:
%
%
%

This script program clusters the line segements
extracted from the original image in approximately-
unrelated sets, to break the complexity of the
connectivity analysis to follow. Then plots the
resulting clusters with a number of different colors
for improved visualization. The subprogram that
actually computes the clustering is 'breakPL',
called once from this code.

COMPUTER-AIDED RECOGNITION OF
MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS

% =
%
%
%
%
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe
%
% Department of Computer Science
% Naval Postgraduate School, September 1999

Programing Language: Matlab 5.3
Operational System: Windows NT 4.0

This file named: 'PhasellA.m'

%-

PLTotal=PL;
[PLCluster, Clusterization] = breakPL(PLTotal);
PLClusterOrig=PLCluster;
ClusterizationOrig=Clusterization;

SizeCluster=[];
for w=l:size(ClusterizationOrig,2),

SizeCluster=[SizeCluster size(ClusterizationOrig{w}, 2)] ;
end
[SortedSizeCluster,IndexSorted]=sort(SizeCluster);
SortedSizeCluster = fliplr(SortedSizeCluster);
IndexSorted = fliplr(IndexSorted);

for w=l:size(ClusterizationOrig,2),
PLCluster{w}=PLClusterOrig{IndexSorted(w)};
Clusterization{w}=ClusterizationOrig{IndexSorted(w)};

end

SeparatingColor=[. .
1 0
1 0
0 1
0 0
0.5

0 0.5
0 1
0.5 0
0.75 0.75 0
0.5 0 1

%yellow
%green
%blue
%red
%orange
%dark green
%cyan
... %dark brown

r... %brown
;... %purple

109

1 0 12
1 0.75 0.75 2
0.6 0.6 1 2

];

... %magenta

... %pink

... %light blue

S=0;
thickNessOfColor=zeros(1,size(Clusterization,2));
for w=l:size(Clusterization,2) ,

colors{w}=SeparatingColor(mod(w-1,size(SeparatingColor,1))+1,1:3);
thickNessOfColor(w)=...

SeparatingColor(mod(w-1,size(SeparatingColor,1))+1,4);
S=S+size(Clusterization{w}, 2) ;

end

fig3handle=figure(3) ;
plotwithlines(A,PLCluster,thickNessOfColor, colors);
title(tint2str(S) ' out of ' int2str(size(PL,2))...

' PL were clustered into ' int2str(size(Clusterization,2)) . . .
' sets. Largest cluster has '...
int2str(size(PLCluster{l},2)) ' PL.']);

if logResults
hgsave(fig3handle,[FileName '.PLCluster.Fig']);
save([FileName '.PhasellA.mat']);

end

% End of file 'PhasellA.m'

110

%
% Description: This script program merges approximately colinear
% primitive line segments.

% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School,'September 1999 %
■% %

%===%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'Phaselll.m'

% _ %

disp(' ') ;
disp(['Begining of PL merge phase for image in: ''' FileName '"']);

MergedPLl = {} ;
NewLines = [] ;

Tl=clock;
for k=l:length(PLCluster),

disp(['Merging PL cluster ' int2str(k) ' in: '" FileName ''"]);
[Mergedl, Colinearlndexesl, NewMergedLinesl, NumberOfClustersl] =...

colinear(PLCluster{k}, A, cos(20*pi/180), sin(5*pi/180));
MergedPLl{k} = Mergedl;
NewLines = [NewLines NewMergedLinesl];

if (-logResults) & (size(MergedPLl{k},2) > 2)

% plot primitive lines extracted from 'A', emphasized colinear touching
lines

fig3Ahandle=figure(4);

plotwithlines(A,{PLCluster{k} PLCluster{k}(:,ColinearIndexesl)...
PLCluster{k}(:,ColinearIndexesl)} , ...

[1 3 2],{[0 0 1][1 0 0][1 1 0]});
title([int2str(length(Colinearlndexesl)) ' aligned PL''s found in 2nd

step.'])

fig3Bhandle=figure(5);
plotwithlines(A,{PLCluster{k} PLCluster{k}(:,Colinearlndexesl)...

NewMergedLinesl NewMergedLinesl},...
[3 2 3 2],{[1 0 0][1 1 0][1 1 0][0 0 0]});

title(['PL merging step 1: Number of PL''s reduced to '
int2str(size(MergedPLl{k},2)) ' . '])

xlabel([date ' ' int2str(T2(4)) ':' sprintf('%2.2d',T2(5))...

Ill

', ET=' num2str(round(10*etime(T2,Tl))/10) 's'])

paused)
end

end
T2=clock;

disp(['End of PL merge phase, step 1: ET=' num2str(etime(T2,Tl))]);

fig3Chandle=figure(6);
plotwithlines(uint8(255*ones(size(A))),{[MergedPLl{:}] NewLines NewLines},

[2 3 2],{[0 0 1] [1 0 0] [1 1 0]});

title([int2str(size(NewLines,2)} ' merged lines, remaining '...
int2str(size([MergedPLl{:}],2)) ' PL']);

MergedPL=MergedPLl;

disp(['Total PL merge phase: ET=' num2str(etime(T2,T1))]);

if logResults
hgsave(fig3Chandle,[FileName '.MergedPL.fig']);
save([FileName '.Phaselll.mat']);

end

% End of file 'Phaselll.m'

112

function [PL, loop, PLinLoop, DecomposedPLLoops, Indexes,...
contourLoop, supportedFraction, shaperErr, errMax, XJCoordinates] = ...
PhaseIVA(A, unsortedPL, logResults, FileName, PLClusterNumber)

%
% loop{k} = [sequence of endpoint s] defining a closed path, in G,
% starting from node 2k and primitive line segment k
% (second endpoint in the sequence is node 2k-l, for
% which we have G(2k,2k-l)=1).
% If a cycle is not found at the maximum depth of
% search adopted and starting from line segment k,
% loop{k} will be empty. Following the two first
% end-nodes in loop{k} that belong to the same PL,
% only the 'leaving' end-node of each PL will be
% represented. Thus if a cycle is formed by x PL,
% length(loop{k}) will be 2 + (x-1) = x+1
%
% PLinLoop{k} = [sorted set of indexes of those PL forming loop{k}]
%
% DecomposedPLLoops = the cycles that don't contain cycles
%
% Indexes = the indexes in loop and PLinLoop for those cycles that don't
% contain cycles
%
% contourLoop{i} = matriz mx2 of IJCoordinates of the polygon associated
% with the i-th cycle that don't contain cycles
%
%
% Description: Performs the connectivity analysis on graph G,
% finding the cycles, computing buiding-likelihood
% indexes for each of them and plotting the results
% graphically.
%

%=============== ===%
% • %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %
%===%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'PhaselVA.m'

global G

% Debug shortcut
RecomputeG = 1;
if RecomputeG

Len=lengthOfPL(unsortedPL);
[sortedLen, sLenlndex]=sort(Len);

113

PL=unsortedPL(:, fliplr(sLenlndex));

[P, Q, LostPL, IJCoordinates] = pixelPL(PL, size(A));

disp(['Building endpoints graph for cluster #'...
int2str(PLClusterNumber) ' of ''' FileName '''']);

G = graphPL(PL, P, IJCoordinates, size(A));
end

fig4handle=figure(7);

debugFlag = 0;

% find cycles in graph G with distance sort depth-first algorithm
[loop, PLinLoop, h] = ...

smartFindCycles(G, A, PL, IJCoordinates, debugFlag);

if length([loop{:}]) > 0
% eliminate cycles that contain cycles
[DecomposedPLLoops, Indexes] = ...

seploops(A, PLinLoop, PL, 1, debugFlag);

if length(Indexes) > 0
% compute error measures and optionally plot for debugging
[contourLoop, shaperErr, errMax, supportedFraction] = ...
plotcontours(A, loop, PLinLoop, G, Indexes,...
PL, IJCoordinates, debugFlag) ,-

else
contourLoop = [];
shaperErr = [] ;
errMax = [];
supportedFraction = [] ,-

end
else

DecomposedPLLoops = [];
Indexes = [];
contourLoop = [];
shaperErr = [];
errMax = [];
supportedFraction = [];

end

% End of file 'PhaselVA.m'

114

function [NumberOfBuildingClusters, BuildingCluster] = ...
PhaseVA(A, imageBackground, Building, FLCluster,...
pixelLength, Filename, debugMode, numberPlot)

%
% Building =
% PL: {l:NumberOfBuildingCycles}
% Cycle: {1:NumberOfBuildingCycles}
% OwnerCluster: [1:NumberOfBuildingCycles]
%
% Description: Assembles the building clusters from the polygons
% that are building contour candidates and plots them
% with different saturated random colors, to
% improve visualization.

%===%
% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %
%===%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'PhaseVA.m'

% %

elf reset

if numberPlot
if imageBackground

imagesc(0.75 + 0.25*double(A)/255, [0 1]); axis image; ...
colormap(gray); plotColor=[l 1 1]*0.9;

else
image(uint8(255*ones(size(A)))); axis image; ...

colormap(gray) ,- plotColor=[l 1 1]*0.9;
end

else
if imageBackground

imagesc(double(A)/255, [0 1]); axis image; ...
colormap(gray); plotColor=[0 1 0] ;

else
image(uint8(255*ones(size(A)))); axis image;...

colormap(gray); plotColor=[0 0 0];
end

end

if iscell(PLCluster)
NumberOfClusters=length(PLCluster);

else
NumberOfClusters=l ;

end

% Detect touching building cycles and form building clusters

115

NumberOfBuildingClusters = 0;
BuildingCluster.Cluster = [];
BuildingCluster.OwnerCluster = [];
BuildingCluster.IndexesInCluster = [];

for k=l:NumberOfClusters,
% find all the cycles in the k-th cluster of primitive lines
if iscell(PLCluster)

whoInCluster = find(Building.OwnerCluster==k);
else

whoInCluster = [1:size(PLCluster,2)];
end

if -isempty(whoInCluster)
% merge those cycles who have non-null intersection
[Clusters, Partitionindexes] = ...

rPartition(Building.PL(whoInCluster));

for i=l:length(Partitionindexes),

BuildingCluster.IndexesInCluster = ...
[BuildingCluster.IndexesInCluster.. .

{whoInCluster(PartitionIndexes{i})}];
end

NumberOfBuildingClusters = ...
NumberOfBuildingClusters + length(Partitionindexes);

BuildingCluster.Cluster = ...
[BuildingCluster.Cluster Clusters];

BuildingCluster.OwnerCluster = ...
[BuildingCluster.OwnerCluster...

k*ones(l,length(Partitionindexes))];
end

end

BuildingCluster.ICenter = zeros(1,NumberOfBuildingClusters);
BuildingCluster.JCenter = zeros(1, NumberOfBuildingClusters);
BuildingCluster.Area = zeros(1,NumberOfBuildingClusters);
BuildingCluster.AvLight = zeros(1,NumberOfBuildingClusters);
BuildingCluster.StdDevLight = zeros(1,NumberOfBuildingClusters);

for i=l:length(BuildingCluster.IndexesInCluster),
BuildingCluster.Area(i) = 0;
tColor = 2*pi*rand;
RandomColor = (1+[cos(tColor) cos(tColor+2*pi/3)...

cos(tColor+4*pi/3)])12;
RandomColor2 = (1+[cos(tColor+pi) cos(tColor+2*pi/3+pi)...

cos(tColor+4*pi/3 + pi)])/2;

areaControlFrame=uint8 (zeros (size (A))) ,-

if -isempty(BuildingCluster.IndexesInCluster{i})
for j=l:length(BuildingCluster.IndexesInCluster{i}),

controlFrame=uint8(zeros(size(A)));

ISeq = Building.Contour{BuildingCluster.IndexesInClusterU}(j)}.ISeq;

116

JSeg = Building.Contour{BuildingCluster.IndexesInCluster{i}(j)}.JSeq;

[CX, CY, C] = improfile2(A,JSeq,ISeq) ;
onBorders{j} = unique(sub2ind(size(A) ,CY,CX));
controlFrame(onBorders{j})=1;

areaControlFrame = areaControlFrame | bwfill(controlFrame,'holes');

% imagesc(controlFrame)

if numberPlot
patch(JSeq, ISeq, plotColor);

else
, patch(JSeq, ISeq, RandomColor) ;

end
% pause, for debugging

end

arealncludingBordersInPixels = sum(areaControlFrame(:));

[IPixels, JPixels] = ind2sub(size(A), find(areaControlFrame));
BuildingCluster.ICenter(i) = sum(IPixels)/arealncludingBordersInPixels;
BuildingCluster.JCenter(i) = sum(JPixels)/arealncludingBordersInPixels;

edgeAreaControlFrame = edge(areaControlFrame,'canny');

% Debug patch (uncomment for debugging):

% elf
% subplot(121); imagesc(areaControlFrame); colormap(l-gray/10); axis

image;
% subplot(122); imagesc(edgeAreaControlFrame); colormap(l-gray/10); axis

image;
% pause

perimeterlnPixels = sum (edgeAreaControlFrame (:));

areaEstimate = (pixelLength"2)*...
(arealncludingBordersInPixels - perimeterInPixels/2);

BuildingCluster.Area(i) = areaEstimate;

innerPixels = setdiff(find(areaControlFrame(:)),...
find(edgeAreaControlFrame(:)));

BuildingCluster.AvLight(i)=...
sum(double(A(innerPixels)))/length(innerPixels);

BuildingCluster.StdDevLight(i)=std(double(A(innerPixels)));

if numberPlot
h=text(BuildingCluster.JCenter(i)

BuildingCluster.ICenter(i),int2str(i));
set(h,'Color',[0 0 0],'FontWeight','bold');

else
plotcross(BuildingCluster.JCenter(i)

BuildingCluster.ICenter(i),[1 1 1]);
end

if debugMode
hl=line([1 340],[BuildingCluster.ICenter(i)...

BuildingCluster.ICenter(i)]);
h2=line([BuildingCluster.JCenter(i) . . .

117

BuildingCluster.JCenter(i)],[1 260]);

pause
delete(hi)
delete(h2)

end

end
end

% print target table - building clusters
tableTitle = ...

['| Building Cluster List for Image in ''
I'];
tableTitle(41:41+length(Filename))=[Filename " "];
disp('+
+ ');
disp(tableTitle)
disp('+ + + + + +
+ ');
disp('| Target ID | Coord I | Coord J | Area (m2) | Av Lum | Std Dev Lum |')
disp('+ + + +
+ ');

for i=l:length(BuildingCluster.IndexesInCluster),
disp(['| ' sprintf('%05d',i) ' | ' ...

sprintf('%7.1f',BuildingCluster.ICenter(i))...
' | ' sprintf('%7.If',BuildingCluster.JCenter(i)) ' | '...
sprintf('%7.Of',BuildingCluster.Area(i)) ' | '...
sprintf('%7.If',BuildingCluster.AvLight(i)) ' | '...
sprintf('%7.If',BuildingCluster.StdDevLight(i)) ' ['...

])
end
disp(' + + + +
+ ') ;

function plotcross(J, I, color)

d=0.75;
L=2;

JSeg=[J-d-L J-d j-d J+d J+d J+d+L J+d+L...
J+d J+d J-d J-d J-d-L J-d-L];

ISeg=[I-d I-d I-d-L I-d-L I-d I-d I+d ...
I+d I+d+L I+d+L I+d I+d I-d];

patch(JSeq, ISeq, color)

% End of file 'PhaseVA.m'

118

function [P, Q, LostPL, IJCoordinates] = pixelPL(PL, sizeA)
%
% [P, Q, LostPL, IJCoordinates] = pixelPL(PL, sizeA)
%
% up to 4 PL vertices may coincide at pixel
%
% Description: Computes lookup tables for the endpoints of line
% segments. The tables are used to speed up
% computation of which line segments are in the
% neighborhood of a given point. Up to four endpoints
% are allowed to coincide on the same pixel. The
% fifth and those beyond are lost (what is very
% unlikely to happen).
%

%===%
% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'pixelPL.m'

%

n=size(PL,2);

IJCoordinates = zeros(n,2);

LostPL=[];
P=zeros(sizeA(l),sizeA(2) ,4) ;
Q=zeros(sizeA(l),sizeA(2) ,4) ;
for k=l:n,

[iP, jP] = integerEndPoints(PL, k, sizeA);

inserted=[0 0];

for g=l:2,
IJCoordinates(2*(k-1) + g,:) = PL([5 7]+g-l,k)';
h=0;
while (h < 4)&(-inserted(g)),
h=h+l;
if P(iP(g),jP(g),h)==0,

P(iP(g),jP(g),h)=2*(k-l) + g;
if jP(l)-=jP(2)

Q(iP(g),jP(g),h)=mod(PL(l,k)+(g-l)*pi,2*pi);
else

if iP(l) < iP(2)
Q(iP(l),jP(l),h)= 3*pi/2;
Q(iP(2),jP(2),h)= pi/2;

else

119

Q(iP(l),jP(i),h)= pi/2;
Q(iP(2),jP(2),h)= 3*pi/2;

end
end
inserted(g)=l;

end
end

end

if prod(inserted)~=1
LostPL = [LostPL k];

end

end

% End of file 'pixelPL.m'

120

function PL = PLfromPoints(P,Q,sizeA)
%
% Description: Creates line segment parametric description from two
% non-coincident points.
%

% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %
%===%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'PLfromPoints.m'

% _ %

LimitI=[P(l) Q(l)];
LimitJ=[P(2) Q(2)];
[LimitJ, Indexes]=sort(LimitJ);
LimitI=LimitI(Indexes);

theta=atan2(LimitI(1)-LimitI(2),LimitJ(2)-LimitJ(1));

% compute origin
CenterXY = f loor ((sizeA+1) /2) ,-
CenterR=[l+sizeA(l)-CenterXY(l) CenterXY(2)] - [0.5 0.5];

% compute base point, closest point to the origin on the line
Disp=CenterR - P(:)';
Y=-Disp(l);
X=Disp(2);
YSinXCos=Y*sin(theta) + X*cos (theta) ,-
XProj=cos(theta)*YSinXCos;
YProj=sin(theta)*YSinXCos;
Base=P+[-YProj XProj];

% compute distance to center
d=sign(double(Based) < CenterR(l))-0 .5) *norm(Base-CenterR) ;

PL = [theta d Base LimitI LimitJ]';

%===%
% End of file 'PLfromPoints.m'

121

function [contourLoop, error, errUax, supportedFraction] =...
plotcontours(A, loop, PLinLoop, G, Indexes, PL,...
IJCoordinates, debugMode)

% Description: Computes the building-likelihood indexes and
% plots the cycles corresponding to the most likely
% building contours.

% ^

% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'plotcontours.m'

Len = lengthOfPL(PL);

contourLoop = {} ;

imagesc(A); colormap(gray); axis image
for k=l:length(Indexes) ,

%imagesc(A); colormap(gray); axis image

for m=l:length(Indexes{k}),
[ISeq, JSeq, totalPerimeter,...

supportedFraction{length(Indexes{k})*(k-l) + m}] =...
IJSegFromPath(loop{Indexes{k}(m)} , . . .

IJCoordinates, PL, G, size(A));
contourLoop{ (length(Indexes{k})*(k-l) +m)}=[ISeq' JSeq'],-

PLIndexes = unique(floor((loop{Indexes{k}(m)}-l)12) +1);
[sLenSel, slndexes]=sort(Len(PLIndexes));
slndexes = fliplr(slndexes);
BasePL = PL(:,PLIndexes(slndexes(1)));
BaseTheta = BasePL (1);

[error{(length(Indexes{k})*(k-l) + m) } , . . .
errMax{(length(Indexes{k})*(k-l) + m)},...
error2{(length(Indexes{k})*(k-l) + m)}]...

= quadError(ISeq, JSeq, BaseTheta, size(A), 0) ,-

if debugMode
plotwithlines(A,{PL PL(:,PLinLoop{Indexes{k}(m)})},...

C3 3],{[0 0 1][1 0 0]})
title([int2str(Indexes{k}(m)) ': ['...

int2str(loop{Indexes{k}(m)}) '], shapErr='...
num2str(error{(length(Indexes{k})*(k-1) + m)})...

122

', sFrac=' num2str(supportedFraction{length(Indexes{k}>*(k-1) +
m}) . . .

', maxErr=' num2str(errMax{length(Indexes{k))*(k-1) + m})])
xlabel([' I:' int2str(IJCoordinates(loop{Indexes{k}(m)},1)')...

' J:' int2str(IJCoordinates(loop{Indexes{k}(m)},2)')])
ylabel(int2str(length(PLinLoop{Indexes{k}(m)})))

h=line(JSeq,ISeg);
set(h,'LineWidth',1)
set(h,'Color',[0 1 0])
end

end
if debugMode

pause
end

end

for k=l:length(Indexes),

for m=l:length(Indexes{k}),

if (((length(PLinLoop{Indexes{k>(m)})<=4)&...
(error{length(Indexes{k})*(k-l) + m} < 0.40)) | - - -
((supportedFraction{length(Indexes{k})*(k-l) + m}>0.85)&...

(error{length(Indexes{k})*(k-l) + m} < 0.20)))

ISeq = contourLoop{(length(Indexes{k})*(k-1) + m)}(:,l);
JSeq = contourLoop{(length(Indexes{k})*(k-l) + m)}(:,2);

h=line(JSeq,ISeq);
set(h,'LineWidth',2)
set(h,'Color',[0 1 0])

% paused)
end

end
% pause

end

% End of file 'plotcontours.m'

123

function plotwithlines(A, PrimitiveLines, thickness, colors);
%
% Description: Plots primitive line segments extracted from
% image 'A' supperposed on 'A'. The set of
% line segments may be partioned into clusters,
% situation where colors and thicknesses can
% be individually speciafied for each cluster.

I %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %

a • %

% Luiz Alberto Cardoso, under supervision of Prof. Neil C Rowe %

I %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'plotwithlines.m'

%-

imagesc(double(A)/255, [0 1]); axis on; axis image; colormap (gray)
hold on

if (size(PrimitiveLines,2)>1)
if (length(colors)==1)

propColor = colors{1};r
colors=[];

for k=l:size(PrimitiveLines,2)
colors{k} = propColor;
end

end
if (length(thickness)==1)

thickness = thickness*ones(1,size(PrimitiveLines, 2));
end

end

for lineSet=l:length(PrimitiveLines) ,
for lineSegIndex=l:size(PrimitiveLines{lineSet} ,2) ,
LimitI=PrimitiveLines{lineSet}(5:6,lineSeglndex)';

LimitJ=PrimitiveLines{lineSet}(7:8,lineSeglndex) ' ;
d=0.25; %1+thickness(lineSet)12;
patch([LimitJ(l)-d LimitJ(l)+d LimitJ(l)+d LimitJ(l)-d LimitJ(l)-d]

[Limitl(l)-d Limitl(l)-d Limitl(l)+d Limitl(l)+d LimitI(1)-d]\
colors{lineSet})

h=line(LimitJ,LimitI);
set(h,'Color',colors{lineSet});
set(h,'LineWidth',thickness(lineSet)) ;

end
end
hold off

% End of file 'plotwithlines.m'

124

function [TotalLineDescription] = prilines(A, B, CB, sei)
%
% Description: Primitive line segments extraction with
% the use of the Radon Transform.
%
% [B, sei, TotalLineDescription] = prilines(A)
%
% 'A' is a MxN matrix representing a gray level image
%
% Each 'B(k)' is an edge images extracted from 'A', for
% k in the range [1:length(sei)]
%
% 'CB{k}' is a MxN binary image with CB{k}(i,j)=l
% where a possible corner was morphologically
% extracted from 'A', k in the range [1:length(sei)]
%
% 'sei' is a list of indexes to the edge sets extracted
%
% Each column of 'TotalLineDescription' describes a
% primitive line extracted from 'A'.

%===%
% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %

% Programing Language: Matlab S.3
% Operational System: Windows NT 4.0
%
% This file named: 'prilines.m'

%-

ThetaRange=[0:179] ;
TotalLineDescription = [];

% Image segmentation on main edge images
for k=l:length(sei),

ContourLineDescription = [];
CenterXY = floor((size(B{1>)+1)/2);
CenterRBig=[l+size(B{l},l)-CenterXY(l) CenterXY(2)] - [0.5 0.5];

Rest=B{k}&(~CB{k});

Seg=zeros(size(B{k}));
SegNumber = 0;

% figure

while ~(max(max(Rest))==0),
% imagesc(Rest,[0 1]);colormap(l-gray);axis image;title('Rest'); pause

TBeginSeg=clock;

125

[Seg, Rest] = segm(Rest,8);
SegCopy=Seg;
% imagesc(Seg, [0 1]);colormap(1-gray);axis image;title('Seg Now');pause

AreaSeg=bwarea(Seg) ,-

SegNumber = SegNumber+1;

% crop around the segment, saparing a one-pixel border
% around it for possible intersection with CB{k}:

[ISet, JSet] = ind2sub(size(Seg),find(Seg>0));
minValI=min(ISet) ;
minValI=max([minVall-l 1]);

maxValI=max(ISet);
maxValI=min([maxVall+l size(A, 1)]);

minValJ=min(JSet);
minValJ=max([minValJ-1 1]) ;

maxValJ=max(JSet) ,-
maxValJ=min([maxValJ+1 size(A,2)]);

auxSeg=Seg|CB{k};
transfSeg=auxSeg(minVall:maxVall,minValJ:maxValJ);

% compute origin of small frame
CenterXYSmall = floor((size(transfSeg)+1)/2);
CenterRSmall=[l+size(transfSeg,l)-CenterXY(l) CenterXY(2)] - [0.5 0.5];
CenterRSmalllnBigCoord = CenterRSmall + [minVall-l minValJ-1];

CPUT2=cputime;
[R, Xp]=radon(transfSeg,ThetaRange) ,-
CPUTl=cputime;
% disp(['Radon transform time: CPU=' num2str(CPUT1-CPUT2)])

[maxRforEachTheta, maxlndex] = max(R);
[maxR, thetalndex] = max(maxRforEachTheta);
globalMaxR=maxR;
displndex=maxlndex(thetalndex);
% maxR=max(max(R));

radonMin = 2*3/4;

if maxR > radonMin,
LPDetected=0;

[mask, CenterR, theta, d, base] = ...
radsel(size(transfSeg), size(R), thetalndex, displndex);

bigMask = zeros(size(Seg));
bigMask(minValI:maxValI,minValJ:maxValJ)=mask;

dummyPoint=[0 0] ;
d = d + sigdistoline(CenterRSmalllnBigCoord,...

[theta 0 CenterRBig dummyPoint dummyPoint]');

126

r = bigMask.*double(auxSeg); % B{k);

C PUT2=cpu t ime;
[UsedPixels, LineDescription] = xlinesfr, theta, d);
C PUT1=cpu t ime;

%disp(['XLINES time: CPU=' num2str(CPUT1-CPUT2)]) ;
% only include line primitive if not similar to any previously

detected
for newL=l:size(LineDescription,2),

Line=LineDescription(:,newL);

seenBefore = fuzzyeq(Line,TotalLineDescription);

% [newL seenBefore]
if not(seenBefore)
ContourLineDescription = [ContourLineDescription Line];
TotalLineDescription = [TotalLineDescription Line];

LPDetected=LPDetected+l;
SegCopy(UsedPixels{newL})=0;

end
end
if LPDetected>0

Rest = Rest | SegCopy;
end

end % (maxR > radonMin)

TEndSeg=clock;
disp(['==> Contour #' int2str(sei(k)) ', LP Extraction #'

int2str(SegNumber)...
', ' int2str(LPDetected) ' LP detected, ET='

num2str(etime(TEndSeg, TBeginSeg))]);
% dispC ')

end % while -(max(max(Rest))==0)

end % for k=l:length(sei)

% End of file 'prilines.m'

127

function [errorAv, errorMax, errorAvRef] = ...
quadErrordSeq, JSeq, BaseTheta, sizeA, debugMode)

%
% Description: Computes the deviations from ideal shapes for
% building contours.

% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %

I ■ %

% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %

I %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %

L-_™___. !
% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'guadError.m'

%-

errorTotal = 0;
lengthTotal = 0;
errorMax = 0;

global P

LenAux = zeros(1,length(ISeq)-1);
errorlnJump = zeros(1,length(ISeq)-1);
thetaAux = zeros(1,length(ISeq)-1);

if debugMode
figure(8)
image(uint8(255*ones(sizeA))); colormap(gray); axis image

end

for k=2:length(ISeq),
PLAux = PLfromPoints([ISeq(k-l) JSeq(k-l)],...

[ISeq(k) JSeq(k)], sizeA);
thetaAux(k-1) = PLAux(1);
LenAux(k-l) = lengthOfPL(PLAux);
errorlnJump(k-1) = LenAux(k-l)*abs(sin(2*(mod(thetaAux(k-1)

- BaseTheta, pi/2))));
errorTotal = errorTotal + errorlnJump(k-1);
lengthTotal = lengthTotal + LenAux(k-1);

end
errorAv = errorTotal / lengthTotal;

[maxLenAux, whereMax] = max(LenAux);
thetaRef = thetaAux(whereMax);

for k=2:length(ISeq),
errorlnJump(k-1) = LenAux(k-l)*abs(sin(2*(mod(thetaAux(k-1)

- thetaRef, pi/2))));
errorTotal = errorTotal + errorlnJump(k-1);

128

if debugMode
h=line(JSeq([k-l k]),ISeq([k-1 k]));
if whereMax==k-l
set(h,'color',[1 0 0]);

set(h,'lineWidth',2);
end

title(['e=' num2str(errorInJump(k-1)/LenAux(whereMax)).
', S=' num2str(abs(sin(2*(mod(thetaAux(k-l)...
- thetaRef, pi/2)))))]);

pause
end

end
errorAvRef = errorTotal / lengthTotal;
errorMax = max(errorInJump/maxLenAux);

% End of file 'quadError.m'

129

function [r, CenterR, theta, d, base] = radsel(sizeA, sizeR, thetalndex,
displndex)
%
% function [r, CenterR, theta, d, base] = radsel(sizeA, sizeR, thetalndex,
displndex)
%
% 'sizeA' is the size of the original image
% .
% 'sizeR' is the size of the Radon Transform matrix
%
% 'thetalndex' is the angular information of the possibly detected PL
%
% 'displndex' (displacement index) is the distance to center
% of the possibly detected PL
%
% 'r' is the linear band mask generated at (thetalndex, displndex)
%
% 'CenterR' is the computed center of the image, as used by the
% Radon tranform routine.
%
% 'theta' is the angle associated with the angular index 'thetalndex'
%
% 'd' is the distance in pixels associated with the displacement index
'thetalndex'
%
% 'base' (=[P1 P2]) is the base point of the linear band mask

% _ ==============%

% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% . %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %

%=

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'radsel.m'

%-

NumOfDispl=sizeR(l); %2*ceil(norm(sizeA-floor((sizeA-1)/2)-1))+3;
Num0fAngles=sizeR(2);

% compute angle theta
thetaIncr=pi/NumOfAngles;
ZeroAngle=ceil((NumOfAngles+1)12);
if thetaIndex>=ZeroAngle

theta=(thetalndex-ZeroAngle)*thetalncr;
else

theta=-thetalncr*(ZeroAngle-thetalndex);
end
cosTheta=cos(theta);
sinTheta=sin(theta);

130

% compute distance from origin
ZeroDispl=ceil((NumOfDispl+1)12) ;
K=NumOfDispl/(2*ceil(norm(sizeA-floor((sizeA-1)/2)-l))+3);
d=(dispIndex-ZeroDispl)/K;

r=zeros(sizeA);

% compute origin
CenterXY = floor((sizeA+1)/2);
CenterR=[l+sizeA(l)-CenterXY(l) CenterXY(2)] - [0.5 0.5];

% compute base point, closest point to the origin on the line
base=CenterR - d*[cosTheta sinTheta];

diagLength=sgrt(sizeA*sizeA');

for k=-(diagLength/2 + 1):0.2:(diagLength/2 + 1),
pointNow=round(base + k*[-sinTheta cosTheta] + [0.5 0.5]);
if (pointNow(l)<=sizeA(l))&(pointNow(2)<=sizeA(2))&(l<=min(pointNow))

r(pointNow(l),pointNow(2))=1;
end

end

r=filter2(ones(3,3),r,'same');
r(find(r>0))=1;

%===%
% End of file 'radsel.m'

131

function [P, Indexes] = rPartition(S)
%
% function [P, Indexes] = rPartition(S)
%
% Description: Creates partition 'P' from set of sets 'S',
% such that:
%
% S{i} and S{j} will are included in the same
% partition P{k} if and only if intersect(S{i},S{j})
% is not empty.
%
% S{Indexes{k}}, with 1 <= k <= number of proper sets
% in partition 'P', are the sets of 'S' which merged
% into P{k}.

% ^

% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
%
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %
%===%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'rPartition.m'

%

n=length(S);

i=l;
EmptyList=[] ;

Indexes={};

for k=l:n,
if isempty(S{k})

EmptyList=[EmptyList k];
Indexes{k} = [] ;

else
Indexes{k}=[k];

end
end

while i < n,
j = i + 1;
while j <= n,

if isempty(intersect(S{i),S{j}))
j = j + 1;

else
S{j}=union(S{i},S{j});
Indexes {j }=uni on (Indexes {i} ,Indexes{j}) ,-
S{i}=[];
Indexes{i}=[];

132

%

EmptyList=[EmptyList i] ;
j = n+1;

end
end
i = i +. 1 ;

end;

nonEmptyClusters = setdiff([l:n],unique(EmptyList));
P=S(nonEmptyClusters);
Indexes=Indexes(nonEmptyClusters);

% End of file 'rPartition.m'

133

function [Seg, Rest] = segmClmag, N)
%
% Description: Get next segmented region from image 'Imag'

% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% . %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C Rowe %

I %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %

%===*

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'segm.m'

%-

Rest=Imag;
I=find(Imag > 0) ;

if length(I)>0
[R,C]=ind2sub(size(Imag),1(1));
[Seg,IDX] = bwselect(Imag,C,R,N) ;
Rest(IDX)=0;

else
Seg=[];

end

% End of file 'segm.m'
==%

134

function [Building, figHandle] = ...
selectbuildingcandidates(A, imageBackground, contourOnly,...
BuildingCandidate, PLinBuild, cycleSummary, shapeError,...
shapeMaxError, sFrac, numBuildingsInCluster, sizeA, debugMode)

%
% Description: Selects building candidate countours acording
% by thresholding error measurers with non-increasing
% functions heuristically adjusted.

% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %
%===%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'selectbuildingcandidates.m'

if imageBackground
figHandle = imagesc(double(A)/255, [0 1]); axis image;...

colormap(gray); plotColor=[0 1 0];
else

figHandle = image(uint8(255*ones(sizeA))); axis image;...
colormap(gray); plotColor=[0 0 0] ;

end

totalNumOfBuildings = 0;

for k=l:length(numBuildingsInCluster),

for m=l:numBuildingsInCluster(k),

if -isempty(BuildingCandidate{k,m})
ISeq = BuildingCandidate{k,m}(:,1);
JSeq = BuildingCandidate{k,m}(:,2);

if debugMode
h=line(JSeq,ISeq);
set(h,'LineWidth',2)
set(h,'Color',[0 1 0])
title(['Cluster=' int2str(k) ' #PL='...

int2str(length(PLinBuild{k,m})) ' Build=' int2str(m)
' shErr=' num2str(shapeError{k,m})...
' shMax=' mjm2str(shapeMaxError{k,m})...
' sFrac=' num2str(sFrac{k,m})])

% pause ,
end

LB = length(PLinBuild{k,m});

135

% monotonic threshold function application
if ({(LB <= 3)&(sFrac{k,m}>=0.75)&...

(shapeError{k,m} <= 0.5)&...
(shapeMaxError{k,m} <= 0.9)) j-..

((LB == 4)&(sFrac{k,m}>=0.75)&...
(shapeError{k,m} <= 0.5)&...
(shapeMaxError{k,m} <= 0.70)) |...

((LB >= 5)&(LB <= 9)&...
(sFrac{k,m}>=0.85)&...
(shapeError{k,m} <= 0.30)&...
(shapeMaxError{k,m} <= 0.35)) |...

((LB >= 10)&(sFrac{k,m}>=0.85)&...
(shapeError{k,m} <=■ 0 .30)&. . .
(shapeMaxError{k,m> <= 0.2)))

if contourOnly & imageBackground
h=line(JSeq,ISeg);
set(h,'LineWidth',2)
set(h,'Color', plotColor)

else

h=patch(JSeq, ISeq, plotColor) ,-
end

totalNxomOfBuildings = totalNumOfBuildings + 1;
Building.PL{totalNumOfBuildings} = PLinBuild{k,m};
Building.Cycle{totalNumOfBuildings} = cycleSummary{k,m},
Building.OwnerCluster(totalNumOfBuildings)=k;
Building.Contour{totalNumOfBuildings}.ISeg = ISeq';
Building.Contour{totalNumOfBuildings}.JSeq = JSeq';

else
if debugMode

h=line(JSeq,ISeq);
set(h,'LineWidth',1)
set(h,'Color', [0 0 1])
end

end
end

end
end

titlet[int2str(totalNumOfBuildings) ' building candidates found.'])

% End of file 'selectbuildingcandidates.m'

136

function [PLinLoop, Indexes] = ...
seploops(A, PLinLoopOrig, PL, clusterFirst, debugMode)

%
%
% PLinLoop{k} = PLinLoopOrig{j}, for some j.
%
% Description:
%
% 'seploops' extracts cycles from the set PLinLoopOrig that don't
% contain other cycles in the same set PLinLoopOrig, thus eliminating
% some spuriuous cycle detections. Indexes{k} is the index in
% PLinLoopOrig{} of the k-th non-spurious cycle found.
%
% (arguments 'A' and 'PL' are only used for visualization plots)

%===%
% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %
%===%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'seploops.m'

% %

if clusterFirst
% then merge those which intersect
[PLinLoopMerged, Mergedlndexes] = rPartition(PLinLoopOrig) ,■
PLinLoop = {} ;
Indexes = [] ;
T = 0;
for k=l:length(PLinLoopMerged),

ClusteredCycles = PLinLoopOrig(Mergedlndexes{k});
[P, Ind] = fPartition(ClusteredCycles);
for j=l:length(Ind),

T = T+l;
PLinLoop{T}=P{j}; %=LoopCluster{Ind(T)};
Indexes{T}=MergedIndexes{k}(Ind(j));

end
end

else
PLinLoop = PLinLoopOrig;
Indexes = [];

end

if debugMode
T=0;
for k=l:length(PLinLoop),
if -isempty(PLinLoop{k})

T=T+1;
plotwithlines(uint8(255*ones(size(A))),...

137

{PL(:,PLinLoop{k})},[2],{[0 1 0]})
if T > 1

axis(v)
end

grid on
if clusterFirst

title([int2str(T) ': ' int2str(length(Indexes{T})
' overlapping loops'])

else
title([int2str(T) ': [' int2str(PLinLoop{k})...

'] formant PL'])
end

pause
v = axis;

end
end

end

% End of file 'seploops.m'

138

function [h, Proj]=sigdistoline(P,Line)
%
% Description:
%
% Computes the distance from point 'P' to a given line.
%
% 'Line' is a primitive line in the format:
% [theta, d, base, LimitI, LimitJ]

%===%
% %
% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'sigdistoline.m'

%-

theta=Line(1);
d=Line(2);
base=Line(3:4);
Center = base(:)' + d*[cos(theta) sin(theta)];

Disp=P(:)'-Center;
Y=-Disp(l);
X=Disp(2);
YSinXCos=Y*sin(theta) + X*cos(theta);
XProj=cos(theta)*YSinXCos - d*sin(theta);
YProj=sin(theta)*YSinXCos + d*cos(theta);
Proj =Center+[-YProj XProj];

h=sign(Proj(1) - P(l))*norm(Proj-P(:)');

%==
% End of file 'sigdistoline.m'

139

function [loop, PLinLoop, h] = smartFindCycles(6, A, PL, IJCoordinates,
debugFlag)
%
% Description: Find cycles in the graph G and computes
% polygons associated with each of them.

% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% ■ %

% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %
%===%

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%
% This file named: 'smartFindCycles.m'

sPL = [];

loop={};
PLinLoop = {};

n = size(PL,2);

searchSet = [l:2:2*n];

while -isempty(searchSet),
otherVerticeOfPL = find(G(searchSet(1),:)==1);
InitialPath = [otherVerticeOfPL searchSet(1)];

k = floor((searchSet(l)-l)/2)+l;

[loop{k}, h] = loopfromPL(InitialPath, 7, IJCoordinates);
PLinLoop{k} = unique(floor((loop{k}-l)/2)+1);

if length(PLinLoop{k}) < 3
PLinLoop{k} = [],-

end

searchSet = searchSet(2:length(searchSet));

if -isempty(PLinLoop{k})
searchSet = ...

setdiff (searchSet, setdif f (loop{k} , OtherVerticeOfPL)) ,-
disp(['Searching for cycles: ' . . .

num2str(round(1000*length(searchSet)/n)/10) '% done.'])

if debugFlag
PLinLoop{k}
sPL = [sPL PL(:,PLinLoop{k})];

plotwithlines(A, {PL(:,PLinLoop{k}) PL(:,k)},...

140

[2 2], {[0 1 0][1 0 0]})
vl=axis;
title(['loop: [' int2str(loop{k}) '] g='...

int2str((InitialPath(l)>InitialPath(2)}+l)])
xlabel([' h=' int2str(h)]);

pause

v=axis;
if sum(v==vl)~=length(v)

for m=3:length(loop{k}),
plnow = floor((loop{k}(m)-l)/2)+l;
plotwithlines(A, {PL(:,PLinLoop{k}) PL(:,plnow)},...

[2 2], {[0 1 0].[1 0 0]})
titlet['loop: [' int2str(loop{k}) '] g='...

int2str((InitialPath(l)>InitialPath(2))+l)])
othernodenow = find(G(loop{k}(m),:)==1);

xlabeK['Node=' int2str(loop{k)(m))...
' Jumped with G='...
int2str(double(G(loop{k}(m-1),othernodenow)))]) ;

axis(v)
pause

end
end

end
end

end

if debugFlag
plotwithlines(A, {sPL}, 2, {[010]})

end

% End of file 'smartFindCycles .m'

141

function [UsedPixels, LineDescription] = xlines(r, theta, disp)
%
% [UsedPixels, LineDescription] = xlines(r, theta, disp)
%
% r binary image
%
% Description: Computes the best line passing through the on-pixels
% of each segmented region in r.

% ^

% COMPUTER-AIDED RECOGNITION OF %
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS %
% %
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe %
% %
% Department of Computer Science %
% Naval Postgraduate School, September 1999 %
% %

% Programing Language: Matlab 5.3
% Operational System: Windows NT 4.0
%

% This file named: 'xlines.m'

% %

Rest=r;
Seg=zeros(size(r));
s=0;
LineDescription = [] ;
UsedPixels=[];

% compute origin
CenterXY = floor((size(r)+1)/2);
CenterR=[l+size(r,l)-CenterXY(l) CenterXY(2)] - [0.5 0.5];

% compute base point, closest point to the origin on the line
base=CenterR - disp*[cos(theta) sin(theta)];
while -(max(max(Rest))==0),

[Seg, Rest] = segm(Rest,8);

% test if Seg is plausible line segment
if lineseg(Seg)

% if it is: (1) increment s, B{s} <— Seg
% (2) annotate parameters

lineParms = bestline(Seg, CenterR); %, bigMask, auxSeg);
angleOfThisSeg=lineParms(1);
if (abs(cos(angleOfThisSeg-theta)) > cos(pi/5))

LineDescription = [LineDescription lineParms];
s=s+l;
UsedPixels{s} = find{bwmorph(Seg,'spur',2)>0);

end
end

end

% End of file 'xlines.m'

142

LIST OF REFERENCES

1. Short, Sr., Nicholas M., The Remote Sensing Handbook, Goddard Space Flight
Center, NASA, May, 1999. [http://rst.gsfc.nasa.gov/].

2. Smith, J., "Eyes over Kosovo", ABC News, 7 April, 1999.
[http://more.abcnews.go.com/sections/tech/closerlook/recontech990407.html].

3. Boyle, A., and Windrem, R., "Spies on the watch for atrocities", MSNBC News, 26
March 1999. [http://www.msnbc.com/news/253629.asp].

4. Espuche, A. Garcia, Corboz, A, Bogdanovich B., and Sola-Morales I., Ciudades: del
globo al satelite, Centre de Cultura Contemporänia de Barcelona y Editorial Electa,
Barcelona, 1994.

5. Moore, W., "About Ace Aerial", Ace Aerial Photography, Inc., 14 May 1999.
[http://www.aceaerialphoto.com/AboutAce.html].

6. Federation of American Scientists, "Introduction to Imagery Intelligence",
Intelligence Resource Program, 1997. [http://www.fas.org/irp/imint/imint_101.htm].

7. Mazour A. and King, S., "Design and Development of Human Equivalent Inspection
System", Canpolar East Inc., September 1999.
[http://www.vetech.com/photonics.htm].

8. Earth Resource Surveys Inc., "IKONOS Image Products", October 1999.
[http://www.ersi.bc.ca/ikonos.html].

9. Microsoft Research, 1998. [http://terraserver.microsoft.com/].

10. Aerial Images, Inc., "Spin-2 Satellite Imagery", 1999. [http://www.spin-2.com/].

11. Radon, J., English translation of "Über die Bestimmung von Funktionen durch ihre
Integralwerte längs gewisser Mannigfaltigkeiten", Ber. Verh. Sachs. Akad. Wiss.
Leipzig, Math-Nat., Vol. 69, pp. 262-277, 1917, in Deans S., The Radon Transform
and Some of Its Applications, Appendix A, John Wiley & Sons, 1983.

12. Deans S., The Radon Transform and Some of Its Applications, John Wiley & Sons,
1983.

13. Ablameyko S., Lagunovsky D., "Aerial Images: from Straight Lines to Rectangles",
Proceedings ofSPIE Conference on Visual Communication and Image Processing,
Chicago, Vol. 2308, pp. 2040-2048,1994.

143

14. Lagunovsky D., Ablameyko S., "Rectangle-Shaped Object Detection in Aerial
Images", Proceedings ofSPIE Conference on Visual Communication and Image
Processing, Taipei, Vol. 2501, pp. 1566-1574,1995.

15. Canny, J., "A computational approach to edge detection", IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 8, no. 6,679-698, 1986.

16. Heath, M., Sarkar, S., Sanocki, T. and Bowyer, K., "Comparison of Edge Detectors.
A Methodology and Initial Study", Computer Vision and Image Understanding, vol.
69, no. 1, January 1998.

17. Somka, M., HQavac, V. and Boyle, R., Image Processing Analysis and Machine
Vision, Chapman & Hall, London, 1993.

18. Cormen, H. T., Leiserson, C.E., and Rivest R.L., Introduction to Algorithms, Chapter
VI, The MIT Press, 1990.

19. Hagan, M. T., Demuth, H. B., Beale, M., Neural Network Design, Chapter 11, PWS
Publishing Company, 1995.

20. Cardoso, L. A., Rowe, N. C, "Report in Computer Vision - A Directed Study:
Computer -Aided Interpretation of Aerial Photographs", Internal Report, Department
of Computer Science, Naval Postgraduate School, Monterey, March 1999.

21. Lin, C. and Nevatia, R., "Buildings Detection and Description from Monocular Aerial
Images", ARPA96, pp. 461-468,1996.

22. Lin, C. and Nevatia, R., "Buildings Detection and Description from a Single Intensity
Images", Computer Vision and Image Understanding, Vol. 72, No. 2, pp. 101-121,
November, 1998.

23. Paparoditis, N., "Building Detection and Reconstruction from Mid- and High-
Resolution Aerial Imagery", Computer Vision and Image Understanding, Vol. 72,
No. 2, pp. 122-142, November, 1998.

24. Kuttikkad, S. "2-D Site Models from Single-pass SAR Image", 17 April, 1997.
[http://www.cfar.umd.edu/~shyam/urban.html].

144

BIBLIOGRAPHY

Gupta, Madan M. and Knopf, George K., editors, Neuro-Vision Systems Principle and
Applications (a collection of 47 selected papers in neuroscience and vision), IEEE
Press, 1994.

Lin, C, Huertas, A. and Nevatia, R., "Detection of Buildings from Monocular Images",
Ascona95, pp. 125-134,1995.

Pratt, William K., Digital Image Processing, Second Edition, John Wiley & Sons, Inc.,
1991.

Ritter, Gerhard X. and Wilson, Joseph N. Handbook of Computer Vision in Image
Algebra, CRC Prress,, 1996.

Schutte, K., "Recognition of Buildings from Aerial Images", in: J.A.C. Bernsen, J.J.
Gerbrands, A.A. Hoeve, A.W.M. Smeulders, M.A. Viergever, A.M. Vossepoel (eds.),
Third Quinquennial Review 1991-1996 Dutch Society for Pattern Recognition and
Image Processing, NVPHBV, Delft, pp. 211-225,1996.

145

THIS PAGE INTENTIONALLY LEFT BLANK

146

INITIAL DISTRIBUTION LIST

I
1. Defense Technical Information Center.

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

National Reconnaissance Office
14675 Lee Road
Chantilly, Virginia 20151-1715

4. Professor Dan Boger
Chairman, Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor Neil C. Rowe, Code CS/Nr
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

6. Prof. Roberto Cristi, Code EC/Cx
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

7. Prof. Robert B. McGhee, Code CS/Mz
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

8. Prof. Craig W. Rasmussen, Code MA/Ra
Department of Mathematics
Naval Postgraduate School
Monterey, California 93943-5121

9. Prof. Carlos F. Borges, Code: MA/Bc
Department of Mathematics
Naval Postgraduate School
Monterey, California 93943-5121

147

10. Director, Institute de Pesquisas da Marinha
Rua Ipiru 2, Una do Govemador
21931-090 Rio de Janeiro - RJ
BRAZIL

11. Head of Research, Institute de Pesquisas da Marinha 1
Rua Ipiru 2, Ilha do Govemador
21931-090 Rio de Janeiro - RJ
BRAZIL

12. Diretoria de Ensino da Marinha 1
via: Brazilian Naval Commission
5130 MacArthur Boulevard, NW
Washington, D.C. 20016-3344

13. Director, Diretoria de Engenharia Naval 1
Rua Primeiro de Marco, 118-10° andar - Centra
20.010-000 Rio de Janeiro - RJ
BRAZIL

14. Diretoria de Sistemas de Armas da Marinha, Library 1
Rua Primeiro de Marco, 118 -19° andar - Centra
20.010-000 Rio de Janeiro - RJ
BRAZIL

15. Institute Militär de Engenharia, Library 1
Praca General Tibürcio 80, Praia Vermelha
22290-270 Rio de Janeiro - RJ
BRAZIL

16. Centra Tecnico Aeroespacial, Library 1
Praca Mai. Eduardo Gomes 50, Vila das Acacias
12228-904 Säo Jose dos Campos - SP
BRAZIL

17. Institute Nacional de Pesquisas Espaciais 1
Coordenacäo-Geral de Observacäo da Terra
Av. dos Astronautas, 1758 - Jardim da Granja
12201-970 Säo Jose dos Campos - SP
BRAZIL

18. CC(EN) Luiz Alberto Lisboa da Silva Cardoso 5
Rua Ipiru 2, Hha do Govemador
21931-090 Rio de Janeiro - RJ
BRAZIL

148

